
More on games (Ch. 5.4-5.6)

Announcements

Writing 1 grades up
-2 weeks for regrades (3/16)
-should have comments

HW 3 posting bit late...(due after spring break)

Review: Minimax

Shuang Cheng Afro Deli

8.55 6.2510.25 8.55

WrapFried
 rice

Cheese-
burger

Lo Mein

Minimax

This representation works, but even in small
games you can get a very large search tree

For example, tic-tac-toe has about 9! actions
to search (or about 300,000 nodes)

Larger problems (like chess or go) are not
feasible for this approach (more on this
next class)

Minimax

“Pruning” in real life:

“Pruning” in CSCI trees:

Snip branch

Snip branch

Alpha-beta pruning

However, we can get the same answer with
searching less by using efficient “pruning”

It is possible to prune a minimax search that
will never “accidentally” prune the optimal
solution

A popular technique for doing this is called
alpha-beta pruning (see next slide)

Alpha-beta pruning

Consider if we were finding the following:
max(5, min(3, 19))

There is a “short circuit evaluation” for this,
namely the value of 19 does not matter

min(3, x) < 3 for all x
Thus max(5, min(3,x)) = 5 for any x

Alpha-beta pruning would not search x above

Alpha-beta pruning

This can apply to max nodes as well, so we
propagate the best values for max/min in tree

Alpha-beta pruning algorithm:
Do minimax as normal, except:

Going down tree: pass “best max/min” values
min node: if parent's “best max” greater than

current node, go back to parent immediately
max node: if parent's “best min” less than

current node, go back to parent immediately

Let's solve this with alpha-beta pruning

1 03 4

2

L F R

L R L R

Alpha-beta pruning

max(min(1,3), 2, min(0, ??)) = 2, should pick
action F

1 03 4

2

L F R

L R L R
1 0

2
Order:
1st. Red
2nd. Blue
3rd. Purp

Do not
consider

Alpha-beta pruning

Let best max be “↑” and best min be “↓”

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=?
↓=?

Let best max be “↑” and best min be “↓”

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=?
↓=?

↑=?
↓=?

Let best max be “↑” and best min be “↓”

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=?
↓=?

↑=?
↓=1

Let best max be “↑” and best min be “↓”

1

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=?
↓=?

↑=?
↓=1

Let best max be “↑” and best min be “↓”

1

1

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=1
↓=?

↑=?
↓=1

Let best max be “↑” and best min be “↓”

2

1

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=2
↓=?

↑=?
↓=1

Let best max be “↑” and best min be “↓”

2

1

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=2
↓=?

↑=?
↓=1

↑=2
↓=?

Let best max be “↑” and best min be “↓”

2

1

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=2
↓=?

↑=?
↓=1

↑=2
↓=?

Let best max be “↑” and best min be “↓”

2

1

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=2
↓=?

↑=?
↓=1

↑=2
↓=0

0 < 2 = ↑

Stop exploring

Let best max be “↑” and best min be “↓”

2

1

1 03 4

2

L F R

L R L R

Branches L to R:

Alpha-beta pruning

↑=2
↓=?

↑=?
↓=1

↑=2
↓=0

Done!

 αβ pruning

Solve this problem
with alpha-beta pruning:

3

10

2

2

FL R

L
R

L

1
F

8
F

24
RL

4
F

R

14
F
520

R
L

Alpha-beta pruning

In general, alpha-beta pruning allows you to
search to a depth 2d for the minimax search
cost of depth d

So if minimax needs to find: bm

Then, alpha-beta searches: bm/2

This is exponentially better, but the worst case
is the same as minimax

Alpha-beta pruning

Ideally you would want to put your best
(largest for max, smallest for min) actions first

This way you can prune more of the tree as
a min node stops more often for larger “best”

Obviously you do not know the best move,
(otherwise why are you searching?) but some
effort into guessing goes a long way
(i.e. exponentially less states)

Side note:

In alpha-beta pruning, the heuristic for
guess which move is best can be complex,
as you can greatly effect pruning

While for A* search, the heuristic had to be
very fast to be useful
(otherwise computing the heuristic would take
longer than the original search)

Alpha-beta pruning

This rule of checking your parent's best/worst
with the current value in the child only really
works for two player games...

What about 3 player games?

3-player games

For more than two player games, you need to
provide values at every state for all the players

When it is the player's turn, they get to pick
the action that maximizes their own value
the most

(We will assume each agent is greedy and only
wants to increase its own score... more on this
next time)

3-player games

(The node number shows who is max-ing)
1

2 2 3

3 3 3

1

4,3,3

7,1,2
4,2,4

1,1,8
4,1,5

0,0,10

3,3,41,3,6

7,2,1
4,6,01,8,1

What should player 1 do?
What can you prune?

3-player games

How would you do alpha-beta pruning in a
3-player game?

3-player games

How would you do alpha-beta pruning in a
3-player game?

TL;DR: Not easily

(also you cannot prune at all if there is no
range on the values even in a zero sum game)

This is because one player could take a very
low score for the benefit of the other two

Mid-state evaluation

So far we assumed that you have to reach a
terminal state then propagate backwards
(with possibly pruning)

More complex games (Go or Chess) it is hard
to reach the terminal states as they are so far
down the tree (and large branching factor)

Instead, we will estimate the value minimax
would give without going all the way down

Mid-state evaluation

By using mid-state evaluations (not terminal)
the “best” action can be found quickly

These mid-state evaluations need to be:
1. Based on current state only
2. Fast (and not just a recursive search)
3. Accurate (represents correct win/loss rate)

The quality of your final solution is highly
correlated to the quality of your evaluation

Mid-state evaluation

For searches, the heuristic only helps you find
the goal faster (but A* will find the best
solution as long as the heuristic is admissible)

There is no concept of “admissible” mid-state
evaluations... and there is almost no guarantee
that you will find the best/optimal solution

For this reason we only apply mid-state evals
to problems that we cannot solve optimally

Mid-state evaluation

A common mid-state evaluation adds features
of the state together

(we did this already for a heuristic...)

We summed the distances to the correct spots
for all numbers

eval()=20

Mid-state evaluation

We then minimax (and prune) these mid-state
evaluations as if they were the correct values

You can also weight features (i.e. getting the
top row is more important in 8-puzzle)

A simple method in chess is to assign points
for each piece: pawn=1, knight=4, queen=9...
then sum over all pieces you have in play

Mid-state evaluation

What assumptions do you make if you use
a weighted sum?

Mid-state evaluation

What assumptions do you make if you use
a weighted sum?

A: The factors are independent
(non-linear accumulation is common if the
relationships have a large effect)

For example, a rook & queen have a synergy
bonus for being together is non-linear, so
queen=9, rook=5... but queen&rook = 16

Mid-state evaluation

There is also an issue with how deep should
we look before making an evaluation?

Mid-state evaluation

There is also an issue with how deep should
we look before making an evaluation?

A fixed depth? Problems if child's evaluation
is overestimate and parent underestimate (or
visa versa)

Ideally you would want to stop on states where
the mid-state evaluation is most accurate

Mid-state evaluation

Mid-state evaluations also favor actions that
“put off” bad results (i.e. they like stalling)

In go this would make the computer use up
ko threats rather than give up a dead group

By evaluating only at a limited depth, you
reward the computer for pushing bad news
beyond the depth (but does not stop the bad
news from eventually happening)

Mid-state evaluation

It is not easy to get around these limitations:
1. Push off bad news
2. How deep to evaluate?

A better mid-state evaluation can help
compensate, but they are hard to find

They are normally found by mimicking what
expert human players do, and there is no
systematic good way to find one

Forward pruning

You can also use mid-state evaluations for
alpha-beta type pruning

However as these evaluations are estimates,
you might prune the optimal answer if the
heuristic is not perfect (which it won't be)

In practice, this prospective pruning is useful
as it allows you to prioritize spending more
time exploring hopeful parts of the search tree

Forward pruning

You can also save time searching by using
“expert knowledge” about the problem

For example, in both Go and Chess the start
of the game has been very heavily analyzed
over the years

There is no reason to redo this search every
time at the start of the game, instead we can
just look up the “best” response

Random games

If we are playing a “game of chance”, we can
add chance nodes to the search tree

Instead of either player picking max/min,
it takes the expected value of its children

This expected value is then passed up to the
parent node which can choose to min/max
this chance (or not)

Random games

Here is a simple slot machine example:

V(chance) =

pull don't pull

0chance node

-1 100

Random games

You might need to modify your mid-state
evaluation if you add chance nodes

Minimax just cares about the largest/smallest,
but expected value is an implicit average:

R is better L is better
1 4 2 2

.9 .9
.1 .1

1 40 2 2

.9 .9
.1 .1

Random games

Some partially observable games (i.e. card
games) can be searched with chance nodes

As there is a high degree of chance, often it is
better to just assume full observability
(i.e. you know the order of cards in the deck)

Then find which actions perform best over all
possible chance outcomes (i.e. all possible
deck orderings)

Random games

For example in blackjack, you can see what
cards have been played and a few of the
current cards in play

You then compute all possible decks that could
lead to the cards in play (and used cards)

Then find the value of all actions (hit or stand)
averaged over all decks (assumed equal
chance of possible decks happening)

Random games

If there are too many possibilities for all the
chance outcomes to “average them all”,
you can sample

This means you can search the chance-tree
and just randomly select outcomes (based on
probabilities) for each chance node

If you have a large number of samples, this
should converge to the average

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 9
	Slide 10
	Slide 11
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

