Minimax (Ch. 5—5.3)

COMPLETE MAPR OF OFTIMAL TIC-TAC-TOE MOVES

YOLR MOVE IS GIVEN RBY THE ROSYTION OF THE LARGEST RED syMBoL
ON THE GRID. WHEN YOUR OPPONENT PICKS A MOVE, ZOOM IN ON
THE REGION OF THE GRID WHERE THEY WENT, REPEAT.

MAP FORO'

'_O x >/ X
O 2
i) '
- \)\,\\53@ 00X )
\_7__ callt L_E_J Bl o o e
= WEB

\ (s o faboRomn
b oS g% P ,
™ X x%} T W it
% PORL,~ NOXJOEX ~ XD
S . %@x 0
| ,E_‘. .
i

SRR Ok} X

%@%%@kﬁé% ’
o3 D E:LX zJ
x'_\__'.x s

X e ‘ -‘.;_ /, 4] !_‘ i ;
gea[" >/X
1}()&( o ) >< § £y :
i é@% =
= R ><$<]\ /
>< () E@%

\_xl

KL




Beam search is similar to hill climbing, except
I we track multiple states simultaneously

[.ocal beam search

Initialize: start with K random nodes
1. Find all children of the K nodes

2. Add children and K nodes to pool, pick best
3. Repeat...

Unlike previous approaches, this uses more
memory to better search “hopeful” options



Beam search with
I 3 beams

[.ocal beam search

Pick best 3 options
at each stage to
expand

(17) (31) (22) (1)
Stop like hill-climb | E
(next pick is (D ®CE

same as last pick)




[.ocal beam search

However, the basic version of beam search
I can get stuck in local maximum as well

To help avoid this, stochastic beam search
picks children with probability relative to
their values

This is different that hill climbing with K
restarts as better options get more
consideration than worse ones



[.ocal beam search

heuristic functian
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Genetic algorithms

Nice examples of GAs:
http
http

Donate

Save Population

New Population

Enter any string

Floor:  Ffixed =

Elite clones: 1 =
generation 94
cars alive: 13

Watch Leader
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View top replay
Top Scores:
#1: 212.25 d:206.16 h:-11.8/10.66m (gen 66)
#2: 211.61 d:206.83 h:-12.05/10.46m (gen 43)
#3: 203.18 d:197.94 h:-9.09/10.37m (gen 7)
#4: 182.57 d:176.11 h:0/10.83m (gen 84)
#5: 180.08 d:174.49 h:0/10.95m (gen 39)
#6: 176.99 d:172.86 h:0/11.14m (gen 26)
#7: 169.33 d:162.43 h:0/10.83m (gen 85)
#8: 168.81 d:162.43 h:0/10.56m (gen 79)
#9: 168.6 d:163.12 h:0/11.19m (gen 32)
#10: 168.49 d:164.13 h:0/11.59m (gen 17)

R = SO OO R WSO

Restore Saved Population
Create new world with seed:

Mutation rate: | 5%
Mutation size: | 100% 3

Copy All Copy Selectec

Gravity: | Earth (3.81)

distance: 36.79 meters
height: 2.67 meters

//rednuht.org/genetic_cars_2/
//boxcar2d.com/

BoxCar 2D

Home | Designer | Best Cars | Forum | News | FAQ | The Algorithm | Versions | Contact

Computation Intelligence Car Evolution Using Box2D Physics (v3.2)

60 fps average Hide Input Seed / Choose Temain | 139
Physics step: 1 ms (833 fps
18 MB used Generation: 4 Max Score: 139.5

Car | Score | Time
69
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2 3.8 001
3 03 002
4 3.4 o0z
5 18 0:00
& 10 0:05
7 |32 0:02 up
8 222 010 Nexd
9 116 0:03 l—J
Down

Copy Current
Copy Besi

Torque: 152
rounener - | ([ ¢ S

mutation rate g

max wheels  whe

Nacion a3 ar



Genetic algorithms

Genetic algorithms are based on how life has
I evolved over time

They (in general) have 3 (or 5) parts:
1. Select/generate children
1a. Select 2 random parents
1b. Mutate/crossover
2. Test fitness of children to see if they survive
3. Repeat until convergence



Genetic algorithms

Genetic algorithms are based on how life has
I evolved over time

They (in general) have 3 (or 5) parts:
1. Select/generate children
1a. Select 2 random parents
1b. Mutate/crossover
2. Test fitness of children to see if they survive
3. Repeat until convergence


http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

Genetic algorithms

Selection/survival:
Typically children have a probabilistic survival
rate (randomness ensures genetic diversity)

Crossover Mutation
A B

Crossover: u_»-z-

Split the parent's information into two parts,

then take part 1 from parent A and 2 from B
Mutation:

Change a random part to a random value



Genetic algorithms
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Genetic algorithms

Genetic algorithms are very good at optimizing
I the fitness evaluation function (assuming
fitness fairly continuous)

While you have to choose parameters
(i.e. mutation frequency, how often to take
a gene, etc.), typically GAs converge for most

The downside is that often it takes many
generations to converge to the optimal



Genetic algorithms

There are a wide range of options for selecting
who to bring to the next generation:
- always the top people/configurations (similar
to hill-climbing... gets stuck a lot)
- choose purely by weighted random (i.e.
4 fitness chosen twice as much as 2 fitness)
- choose the best and others weighted random

Can get stuck if pool's diversity becomes too
little (hope for many random mutations)



Genetic algorithms

Let's make a small (fake) example with the
4-queens problem

Adults: . Child pool (fitness):
Q Flght Q
Q /
lef _
4 QQQQ(lo) QQQQ ~(20)

Q| |mutation | |Q|Q Q o)
20 - (150 =(30)
0! (col 2) 0O Q



http://rednuht.org/genetic_cars_2/
http://boxcar2d.com/

I Genetic algorithms

Let's make a small (fake) example with the

4-queens problem Weighted random
Child pool (fitness): selection:
Q G o o ]
q (20) =g =(30) Q
L

N T Q
QQQQ(lO)gQQQ _(ZO)ﬁQ 2
Qal |~ LlQl QlQ

Q- _(15) @ =(35) -




Genetic algorithms

https://www.youtube.com/watch?v=RO90OHn5ZF4Uo



I Single-agent

So far we have look at how a single agent can
I search the environment based on its actions

Now we will extend this to cases where you
are not the only one changing the state (i.e.
multi-agent)

The first thing we have to do is figure out
how to represent these types of problems



Multi-agent (competitive)

Most games only have a utility (or value)
I associated with the end of the game (leaf node)

So instead of having a “goal” state (with
possibly infinite actions), we will assume:

(1) All actions eventually lead to terminal state
(i.e. a leaf in the tree)

(2) We know the value (utility) only at leaves



Multi-agent (competitive)

For now we will focus on zero-sum two-player
games, which means a loss for one person is
a gain for another

Betting is a good example of this: If I win I
get $5 (from you), if you win you get $1 (from
me). My gain corresponds to your loss

Zero-sum does not technically need to add to
zero, just that the sum of scores is constant



https://www.youtube.com/watch?v=R9OHn5ZF4Uo

Multi-agent (competitive)

Z.ero sum games mean rather than representing

outcomes as:
| Me=5, You =-5]

We can represent it with a single number:
|[Me=5], as we know: Me+You = 0 (or some c)

This lets us write a single outcome which
“Me” wants to maximize and “You” wants

to minimize



Minimax

Thus the root (our agent) will start with a
maximizing node, the the opponent will get
minimizing noes, then back to max... repeat...

This alternation of maximums and minimums
is called minimax

[ will use A to denote nodes that try to
maximize and \/ for minimizing nodes



Minimax

Let's say you are treating a friend to lunch.
I You choose either: Shuang Cheng or Afro Deli

The friend always orders the most inexpensive
item, you want to treat your friend to best food

Which restaurant should you go to?

Menus:
Shuang Cheng: Fried Rice=$10.25, Lo Mein=$8.55

Afro Deli: Cheeseburger=$6.25, Wrap=%$8.74



Minimax

/\

Shuang Cheng Afro Deli

.0 Mein v Fried Cheese- v Wrap

rice  DUrger



Minimax

You could phrase this problem as a set of
I maximum and minimums as:

max( min(8.55, 10.25), min(6.25, 8.55) )

... which corresponds to:
max( Shuang Cheng choice, Afro Deli choice)

If our goal is to spend the most money on
our friend, we should go to Shuang Cheng



Minimax

One way to solve this is from the leaves up:

| /\

L F R

LRLR
0



Minimax

max( min(1,3), 2, min(0, 4) ) = 2, should pick
: action F




Minimax A
L F R
VDV

LA A

[ EAN
Solve this minimax - v

problem: -



I This representation works, but even in small
I games you can get a very large search tree

Minimax

For example, tic-tac-toe has about 9! actions
to search (or about 300,000 nodes)

Larger problems (like chess or go) are not
feasible for this approach (more on this
next class)



Minimax

“Pruning” in real life:

I Snip branch




Alpha-beta pruning

However, we can get the same answer with
I searching less by using efficient “pruning”

It is possible to prune a minimax search that
will never “accidentally” prune the optimal
solution

A popular technique for doing this is called
alpha-beta pruning (see next slide)




Alpha-beta pruning

This can apply to max nodes as well, so we
I propagate the best values for max/min in tree

Alpha-beta pruning algorithm:
Do minimax as normal, except:
Going down tree: pass “best max/min” values
min node: if parent's “best max” greater than
current node, go back to parent immediately
max node: if parent's “best min” less than
current node, go back to parent immediately



I Let's solve this with alpha-beta pruning

| /\

L F R

LRLR
0

Alpha-beta pruning



Alpha-beta pruning

max( min(1,3), 2, min(0, ??) ) = 2, should pick

Order: action F
NN
3",
PNAEIDY ¢
‘I



I [.et best max be and best min be

I Branches L to R: . 1 =7
| =7

L F R

Alpha-beta pruning
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I [.et best max be and best min be

I Branches L to R: +=p OStOp EXplOHDg
A

ll -/V 1_0
4

Alpha-beta pruning
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I [.et best max be and best min be

I Branches L to R: a =)
Done! | =7

L F R

Alpha-beta pruning

€CC A €€ | »
I l



I aff pruning A
I L E R
| N M
S A A
i AN
Solve this problem - v
with alpha-beta pruning: -



Alpha-beta pruning

In general, alpha-beta pruning allows you to
I search to a depth 2d for the minimax search
cost of depth d

So if minimax needs to find; b™
Then, alpha-beta searches: b™"

This is exponentially better, but the worst case
is the same as minimax



I Alpha-beta pruning

Ideally you would want to put your best
I (largest for max, smallest for min) actions first

This way you can prune more of the tree as
a min node stops more often for larger “best”

Obviously you do not know the best move,
(otherwise why are you searching?) but some
effort into guessing goes a long way

(i.e. exponentially less states)



I Side note:

In alpha-beta pruning, the heuristic for
guess which move is best can be complex,
as you can greatly etffect pruning

While for A* search, the heuristic had to be

very fast to be useful
(otherwise computing the heuristic would take

longer than the original search)



Alpha-beta pruning

This rule of checking your parent's best/worst
with the current value in the child only really
works for two player games...

What about 3 player games?



3-player games

For more than two player games, you need to
I provide values at every state for all the players

When it is the player's turn, they get to pick
the action that maximizes their own value
the most

(We will assume each agent is greedy and only
wants to increase its own score... more on this
next time)



3-player games

(The node number shows who is max-ing)

I What should player 1 do?
What can you prune?

(433




I 3-player games

How would you do alpha-beta pruning in a
I 3-player game?



I How would you do alpha-beta pruning in a
I 3-player game?

3-player games

TL;DR: Not easily

(also you cannot prune at all if there is no
range on the values even in a zero sum game)

This is because one player could take a very
low score for the benefit of the other two



So far we assumed that you have to reach a
I terminal state then propagate backwards
(with possibly pruning)

Mid-state evaluation

More complex games (Go or Chess) it is hard
to reach the terminal states as they are so far
down the tree (and large branching factor)

Instead, we will estimate the value minimax
would give without going all the way down



Mid-state evaluation

By using mid-state evaluations (not terminal)
I the “best” action can be found quickly

These mid-state evaluations need to be:
1. Based on current state only
2. Fast (and not just a recursive search)
3. Accurate (represents correct win/loss rate)

The quality of your final solution is highly
correlated to the quality of your evaluation



Mid-state evaluation

For searches, the heuristic only helps you find
the goal faster (but A* will find the best
solution as long as the heuristic is admissible)

There is no concept of “admissible” mid-state
evaluations... and there is almost no guarantee
that you will find the best/optimal solution

For this reason we only apply mid-state evals
to problems that we cannot solve optimally



I A common mid-state evaluation adds features
I of the state together

Mid-state evaluation

(we did this already for a heuristic...)
eval(starr)=20 GOAL

2o f B
HED a]s e
3fsfe 7isl

We summed the distances to the correct spots
for all numbers



I We then minimax (and prune) these mid-state
I evaluations as if they were the correct values

Mid-state evaluation

You can also weight features (i.e. getting the
top row is more important in 8-puzzle)

A simple method in chess is to assign points
for each piece: pawn=1, knight=4, queen=9...
then sum over all pieces you have in play



I What assumptions do you make if you use
I a weighted sum?

Mid-state evaluation



I What assumptions do you make if you use
I a weighted sum?

Mid-state evaluation

A: The factors are independent
(non-linear accumulation is common if the
relationships have a large etfect)

For example, a rook & queen have a synergy
bonus for being together is non-linear, so
queen=9, rook=>5... but queen&rook = 16



I There is also an issue with how deep should
I we look before making an evaluation?

Mid-state evaluation



Mid-state evaluation

There is also an issue with how deep should
I we look before making an evaluation?

A fixed depth? Problems if child's evaluation
is overestimate and parent underestimate (or
visa versa)

Ideally you would want to stop on states where
the mid-state evaluation is most accurate



Mid-state evaluation

Mid-state evaluations also favor actions that
“put off” bad results (i.e. they like stalling)

In go this would make the computer use up
ko threats rather than give up a dead group

By evaluating only at a limited depth, you
reward the computer for pushing bad news
beyond the depth (but does not stop the bad
news from eventually happening)



I Mid-state evaluation

It is not easy to get around these limitations:
I 1. Push off bad news

2. How deep to evaluate?

A better mid-state evaluation can help
compensate, but they are hard to find

They are normally found by mimicking what
expert human players do, and there is no
systematic good way to find one



Forward pruning

You can also use mid-state evaluations for
I alpha-beta type pruning

However as these evaluations are estimates,
you might prune the optimal answer if the
heuristic is not perfect (which it won't be)

In practice, this prospective pruning is useful
as it allows you to prioritize spending more
time exploring hopeful parts of the search tree



Forward pruning

You can also save time searching by using
“expert knowledge” about the problem

For example, in both Go and Chess the start
of the game has been very heavily analyzed
over the years

There is no reason to redo this search every
time at the start of the game, instead we can
just look up the “best” response



I If we are playing a “game of chance”, we can
I add chance nodes to the search tree

Random games

Instead of either player picking max/min,
it takes the expected value of its children

This expected value is then passed up to the
parent node which can choose to min/max
this chance (or not)



Random games

Here is a simple slot machine example:




I You might need to modify your mid-state
I evaluation if you add chance nodes

Random games

Minimax just cares about the largest/smallest,
but expected value is an implicit average:

R is better L. is better



I Some partially observable games (i.e. card
I games) can be searched with chance nodes

Random games

As there is a high degree of chance, often it is
better to just assume full observability
(i.e. you know the order of cards in the deck)

Then find which actions perform best over all
possible chance outcomes (i.e. all possible
deck orderings)



Random games

For example in blackjack, you can see what
cards have been played and a few of the
current cards in play

You then compute all possible decks that could
lead to the cards in play (and used cards)

Then find the value of all actions (hit or stand)
averaged over all decks (assumed equal
chance of possible decks happening)



Random games

If there are too many possibilities for all the
chance outcomes to “average them all”,
you can sample

This means you can search the chance-tree
and just randomly select outcomes (based on
probabilities) for each chance node

If you have a large number of samples, this
should converge to the average
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