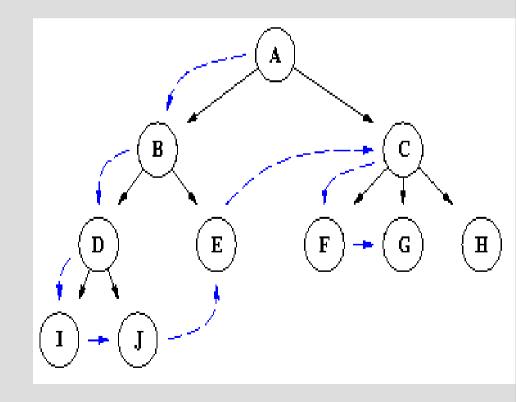
Uninformed Search (Ch. 3-3.4)


Announcements


Writing 1 due tonight

Homework 2 posted tonight

Depth first search

DFS is same as BFS except with a FILO (or LIFO) instead of a FIFO queue

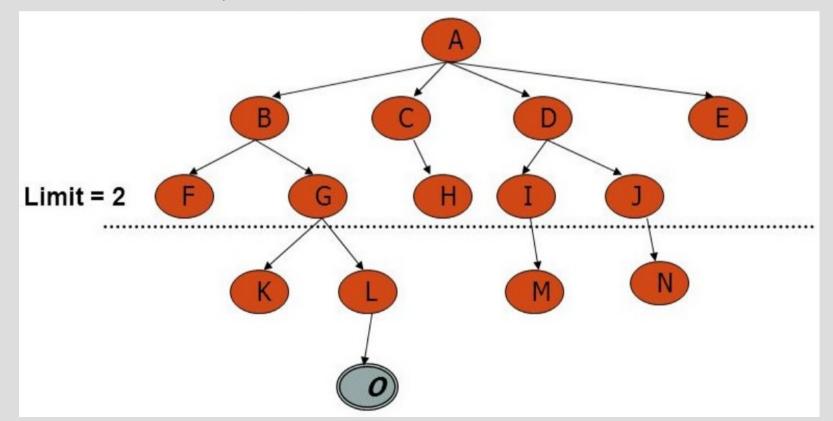
Depth first search

Metrics:

- 1. Might not terminate (not complete) (e.g. in vacuum world, if first expand is action L)
- 2. Non-optimal (just... no)
- 3. Time complexity = $O(b^m)$
- 4. Space complexity = O(b*m)

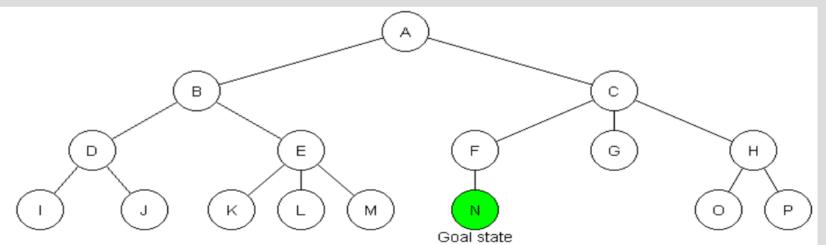
Only way this is better than BFS is the space complexity...

Depth limited search

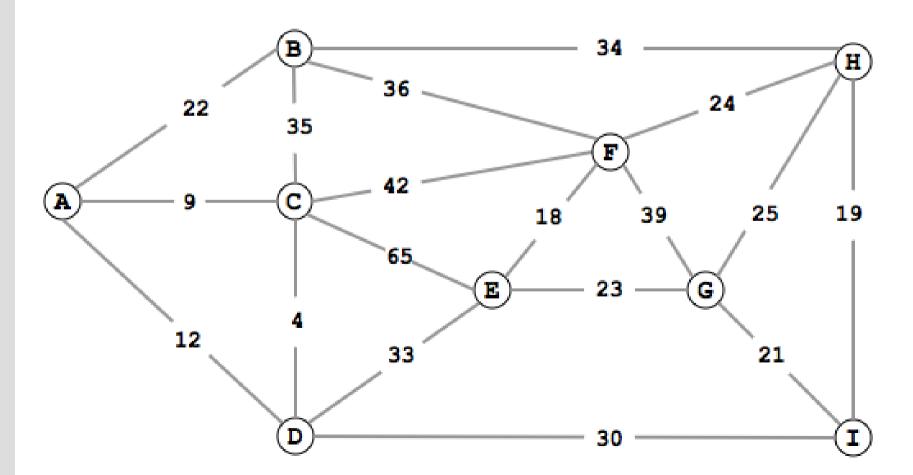

DFS by itself is not great, but it has two (very) useful modifications

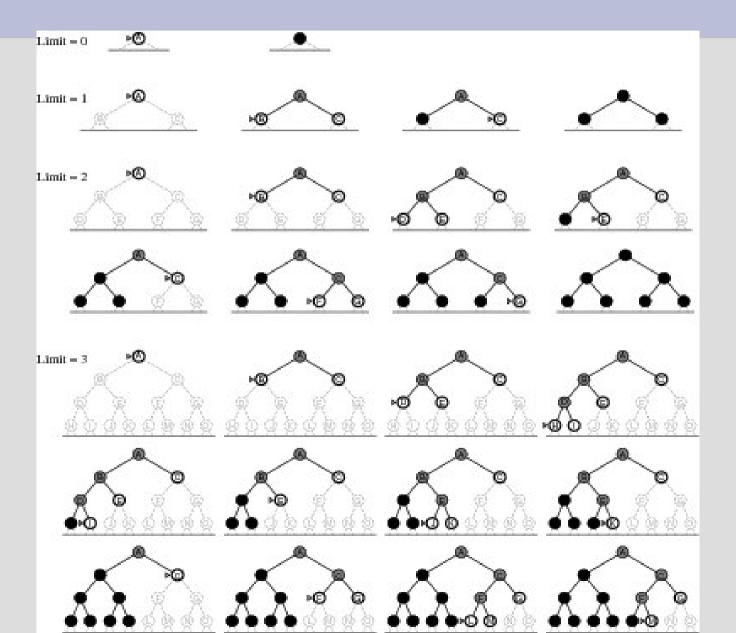
<u>Depth limited search</u> runs normal DFS, but if it is at a specified depth limit, you cannot have children (i.e. take another action)

Typically with a little more knowledge, you can create a reasonable limit and makes the algorithm correct


Depth limited search

However, if you pick the depth limit before d, you will not find a solution (not correct, but will terminate)




Probably the most useful uninformed search is <u>iterative deepening DFS</u>

This search performs depth limited search with maximum depth 1, then maximum depth 2, then 3... until it finds a solution

Try to use iterative deepening DFS on this: Initial=A, Goal=G

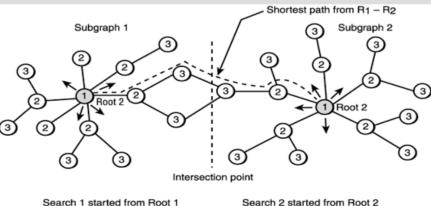
The first few states do get re-checked multiple times in IDS, however it is not too many

When you find the solution at depth d, depth 1 is expanded d times (at most b of them)

The second depth are expanded d-1 times (at most b² of them)

Thus $(d+1) \cdot 1 + d \cdot b + (d-1) \cdot b^2 + \dots + 1 \cdot b^d = O(b^d)$

Metrics: 1. Complete 2. Non-optimal (unless uniform cost) 3. O(b^d) 4. O(b*d)


Thus IDS is better in every way than BFS (asymptotically)

One of the best uninformed searches

Bidirectional search

<u>Bidirectional search</u> starts from both the goal and start (using BFS) until the trees meet

This is better as 2*(b^{d/2}) < b^d (the space is much worse than IDS, so only applicable to smaller problems)

Order of visitation: 1, 2, 3, ...

Bidirectional search

Depth	Nodes	Time		Ν	Memory	
2	110	.11	milliseconds	107	kilobytes	
4	11,110	11	milliseconds	10.6	megabytes	
6	10^{6}	1.1	seconds	1	gigabyte	
8	10^{8}	2	minutes	103	gigabytes	
10	10^{10}	3	hours	10	terabytes	
12	10^{12}	13	days	1	petabyte	
14	10^{14}	3.5	years	99	petabytes	
16	10^{16}	350	years	10	exabytes	

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

Summary of algorithms Fig. 3.21, p. 91

Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening DLS	Bidirectional (if applicable)
Yes[a]	Yes[a,b]	No	No	Yes[a]	Yes[a,d]
O(b ^d)	$O(b^{\lfloor 1+C^*/\epsilon \rfloor})$	O(b ^m)	O(b ^I)	O(b ^d)	O(b ^{d/2})
O(b ^d)	$O(b^{\lfloor 1+C^*/\epsilon \rfloor})$	O(bm)	O(bl)	O(bd)	O(b ^{d/2})
Yes[c]	Yes	No	No	Yes[c]	Yes[c,d]
	First Yes[a] O(b ^d) O(b ^d)	FirstCostYes[a]Yes[a,b]O(bd) $O(b^{l_{1+C^*/\epsilon}l})$ O(bd) $O(b^{l_{1+C^*/\epsilon}l})$	FirstCostFirstYes[a]Yes[a,b]NoO(bd) $O(b^{\lfloor 1+C^*/\epsilon\rfloor})$ $O(b^m)$ O(bd) $O(b^{\lfloor 1+C^*/\epsilon\rfloor})$ $O(bm)$	FirstCostFirstLimitedYes[a]Yes[a,b]NoNo $O(b^d)$ $O(b^{\lfloor 1+C^*/\epsilon\rfloor})$ $O(b^m)$ $O(b^l)$ $O(b^d)$ $O(b^{\lfloor 1+C^*/\epsilon\rfloor})$ $O(bm)$ $O(bl)$	FirstCostFirstLimitedDeepening DLSYes[a]Yes[a,b]NoNoYes[a]O(b ^d) $O(b^{l_{1+C^*/\epsilon}J})$ $O(b^m)$ $O(b^l)$ $O(b^d)$ O(b ^d) $O(b^{l_{1+C^*/\epsilon}J})$ $O(bm)$ $O(bl)$ $O(bd)$

There are a number of footnotes, caveats, and assumptions.

See Fig. 3.21, p. 91.

- [a] complete if b is finite
- [b] complete if step costs $\geq \varepsilon > 0$
- [c] optimal if step costs are all identical

(also if path cost non-decreasing function of depth only)

[d] if both directions use breadth-first search

(also if both directions use uniform-cost search with step costs $\geq \varepsilon > 0$)

Generally the preferred uninformed search strategy