
Uninformed Search (Ch. 3-3.4)
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Search

Goal based agents need to search to find a
path from their start to the goal (a path is a
sequence of actions, not states)

For now we consider problem solving agents
who search on atomically structured spaces 

Today we will focus on uninformed searches,
which only know cost between states but no
other extra information
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Search

In the vacuum example, the states and actions
I gave upfront (so only one option)

In more complex environments, we have a 
choice of how to abstract the problem into
simple (yet expressive) states and actions

The solution to the abstracted problem should
be able to serve as the basis of a more detailed
problem (i.e. fit the detailed solution inside)
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Search

Example: Google maps gives direction by
telling you a sequence of roads and does not
dictate speed, stop signs/lights, road lane
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Search

In deterministic environments the search 
solution is a single sequence (list of actions)

Stochastic environments need multiple 
sequences to account for all possible outcomes
of actions

It can be costly to keep track of all of these
and might be better to keep the most likely
and search again when off the main sequences
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Search

There are 5 parts to search:
1. Initial state
2. Actions possible at each state
3. Transition model (result of each action)
4. Goal test (are we there yet?)
5. Path costs/weights (not stored in states)

(related to performance measure)

In search we normally fully see the problem
and the initial state and compute all actions
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Small examples

Here is our vacuum world again:

2. For all states, we have actions: L, R or S
3. Transition model = black arrows
5. Path cost = ??? (from performance measure)

1. initial

4. goals
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Small examples

8-Puzzle
1. (semi) Random
2. All states: U,D,L,R
4. As shown here
5. Path cost = 1 (move count)
3. Transition model (example):

Result(              ,D) = 

(see: https://www.youtube.com/watch?v=DfVjTkzk2Ig)
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Small examples

8-Puzzle is NP complete so to find the best
solution, we must brute force

3x3 board =              = 181,440 states 

4x4 board =  1.3 trillion states
Solution time: milliseconds

5x5 board = 1025 states
Solution time: hours
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Small examples

8-Queens: how to fit 8 queens on a 8x8 board
so no 2 queens can capture each other

Two ways to model this:
Incremental = each action is to

add a queen to the board
(1.8 x 1014 states)

Complete state formulation = all 8 queens start
on board, action = move a queen
(2057 states)
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Real world examples

Directions/traveling (land or air)

Model choices: only have interstates?
Add smaller roads, with increased cost?
(pointless if they are never taken)

11



Real world examples

Traveling salesperson problem (TSP): Visit
each location exactly once and return to start

Goal: Minimize distance traveled
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Search algorithm

To search, we will build a tree with the root as
the initial state

(Use same procedure for multiple algorithms)
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Search algorithm

What are states/actions for this problem?
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Search algorithm

Multiple options, but this is a good choice
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Search algorithm

Multiple options, but this is a good choice
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Search algorithm

What are the problems with this?
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Search algorithm
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Search algorithm

We can remove visiting states multiple times
by doing this:

But this is still not necessarily all that great...
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Search algorithm

When we find a goal state, we can back track
via the parent to get the sequence

To keep track of the unexplored nodes, we will
use a queue (of various types)

The explored set is probably best as a hash
table for quick lookup (have to ensure similar
states reached via alternative paths are the
same in the has, can be done by sorting) 
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Search algorithm

The search algorithms metrics/criteria:
1. Completeness (does it terminate with a 
valid solution)
2. Optimality (is the answer the best solution)
3. Time (in big-O notation)
4. Space (big-O)

b = maximum branching factor
d = minimum depth of a goal
m = maximum length of any path
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Breadth first search

Breadth first search checks all states which
are reached with the fewest actions first 

(i.e. will check all 
states that can be 
reached by a single 
action from the start, 
next all states that 
can be reached by two 
actions, then three...)
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Breadth first search

(see: https://www.youtube.com/watch?v=5UfMU9TsoEM)
(see: https://www.youtube.com/watch?v=nI0dT288VLs)

28



Breadth first search

BFS can be implemented by using a simple
FIFO (first in, first out) queue to track the
fringe/frontier/unexplored nodes

Metrics for BFS:
Complete (i.e. guaranteed to find solution if exists)
Non-optimal (unless uniform path cost)
Time complexity = O(bd)
Space complexity = O(bd)
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Breadth first search

Exponential problems are not very fun, as seen
in this picture:
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Uniform-cost search

Uniform-cost search also does a queue, but
uses a priority queue based on the cost
(the lowest cost node is chosen to be explored)
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Uniform-cost search

The only modification is when exploring a
node we cannot disregard it if it has already
been explored by another node

We might have found a shorter path and thus
need to update the cost on that node

We also do not terminate when we find a goal,
but instead when the goal has the lowest
cost in the queue.
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Uniform-cost search

UCS is..

1. Complete (if costs strictly greater than 0)
2. Optimal

However....
3&4. Time complexity = space complexity

= O(b1+C*/min(path cost)), where C* cost of
optimal solution (much worse than BFS)
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Depth first search

DFS is same as BFS except with a FILO (or 
LIFO) instead of a FIFO queue
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Depth first search

Metrics:
1. Might not terminate (not complete) (e.g. in

vacuum world, if first expand is action L)
2. Non-optimal (just... no)
3. Time complexity = O(bm)
4. Space complexity = O(b*m)

Only way this is better than BFS is the 
space complexity...
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Depth limited search

DFS by itself is not great, but it has two (very)
useful modifications

Depth limited search runs normal DFS, but if 
it is at a specified depth limit, you cannot have
children (i.e. take another action)

Typically with a little more knowledge, you
can create a reasonable limit and makes the
algorithm correct
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Depth limited search

However, if you pick the depth limit before d,
you will not find a solution (not correct, but
will terminate)
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Iterative deepening DFS

Probably the most useful uninformed search
is iterative deepening DFS

This search performs depth limited search with 
maximum depth 1, then maximum depth 2, 
then 3... until it finds a solution
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Iterative deepening DFS
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Iterative deepening DFS

The first few states do get re-checked multiple
times in IDS, however it is not too many

When you find the solution at depth d, depth 1
is expanded d times (at most b of them)

The second depth are expanded d-1 times
(at most b2 of them)

Thus 
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Iterative deepening DFS

Metrics:
1. Complete
2. Non-optimal (unless uniform cost)
3. O(bd)
4. O(b*d)

Thus IDS is better in every way than BFS
(asymptotically)

Best uninformed we will talk about
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Bidirectional search

Bidirectional search starts from both the goal
and start (using BFS) until the trees meet 

This is better as 2*(bd/2) < bd

(the space is much worse than IDS, so only
applicable to small problems)
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Uninformed search
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