
CSci 2021: Review Lecture 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Midterm 2 topics (in one slide)

Machine-level code representation
Instructions, operands, flags
Branches, conditions, and loops
Procedures and calling conventions
Arrays, structs, unions
Buffer overflow attacks

CPU architecture
Y86 instructions
Control logic and HCL
Sequential Y86-64
Pipelined Y86-64

Outline

Topics in machine code

Announcements break

Topics in CPU architecture

Review questions

Instructions and operands

Assembly language $ machine code

Sequence of instructions, encoded in bytes

An instruction reads from or writes to operands
x86: usually at most one memory operand
AT&T: destination is last operand
AT&T shows operand size with b/w/l/q suffix

Addressing modes

General form: disp(base,index,scale)
Displacement is any constant, scale is 1, 2, 4 or 8
Base and index are registers
Formula: mem[disp + base + index � scale]

All but base are optional
Missing displacement or index: 0
Missing scale: 1
Drop trailing (but not leading) commas

Do same computation, just put address in
register: lea

Flags and branches

Flags (aka condition codes) are set based on
results of arithmetic

ZF: result is zero
SF: result is negative (highest bit set)
OF: signed overflow occurred
CF: unsigned overflow (“carry”) occurred

Used for condition in:
setCC: store 1 or 0
cmovCC: copy or don’t copy
jCC: jump or don’t jump

Just for setting flags: cmp (like sub), test (like
and)

Loops

Simplest structure: conditional jump “at the
bottom”, like a C do-while
C while also checks at beginning

C for e.g. initializes a variable and updates it on
each iteration
Assembly most like C with goto

Stack and frames

“The” stack is used for data with a function
lifetime
%rsp points at the most recent in-use element
(“top”)
Convenient instructions: push and pop

Section for one run of a function: stack frame

Calling conventions

Function arguments go in %rdi, %rsi, %rdx,
%rcx, %r8, and %r9

Return value is in %rax

Handle that both caller and callee want to use
registers
Caller-saved: callee might modify, caller must
save if using

%rax, %rdi, . . . , %r10, %r11, flags

Callee-saved: caller might be using, callee must
save before using

%rbx, %r12, . . . , %rbp, (%rsp)

Arrays

Sequence of values of same size and type, next
to each other
Numbered starting from 0 in C

To find location: start with base, add index times
size
C’s pointer arithmetic is basically the same
operation
Multi-dimensional array

Needs more multiplying

Array of pointers to arrays
Different, more flexible layout
Each access needs more loads

Structs and unions

Struct groups objects of different types and
sizes, in order
Fields often accessed using displacement from
a pointer
Alignment requirements ! padding

Primitive values aligned to their size
Pad between elements, when next needs more
alignment
Pad at end, to round off total size

Unions: “like structs where every offset is 0”
Used to save space if only one needed at a time
Can also reveal storage details

Buffer overflows

Local arrays stored on the stack

C compilers usually do not check limits of array
accesses
Too much buffer data can overwrite a return
address

Changes what code will execute
Various nefarious uses

Various partial defenses:
Randomize stack location
Non-executable stack
Stack canary checking

Outline

Topics in machine code

Announcements break

Topics in CPU architecture

Review questions

Online midterm: hardware

You should be virtually present on Zoom while
doing the test on Canvas
First choice: a computer with a webcam

Second choice: a computer, and the Zoom app
running on a smartphone
If you won’t be able to do either of these, please
contact me in advance

Online midterm: rules

You need to take the midterm live, starting at
3:35pm.

The midterm ends at 4:25pm, even if you started
late

Still paper resources only
Open (paper) book, open (paper) notes, printouts
No electronics, calculators, communicating with
other students

If possible, stay at your computer for the whole
exam

Check with the TA if you need to get up

If you finish early, check with the TA after
submitting but before leaving Zoom

Outline

Topics in machine code

Announcements break

Topics in CPU architecture

Review questions

Y86-64 instructions

Simplified subset of x86-64, simpler encoding

64-bit only, 15 registers

Four kinds of moves, only one addressing mode

Add, subtract, bitwise and, bitwise xor

Conditional jump and move based on equality
and signed comparison
Call, return, push, pop

Halt and two fatal errors, no exceptions

Logic design for control

Combinational circuits:
Compute a function of bits, no memory
Acyclic network of AND, OR, and NOT gates
Also includes word-sized comparison, multiplexors,
and ALU

Stateful elements:
(Clocked) registers
Random-access memory
State updates occur on rising clock edge only

Hardware design in HCL

Simple language for specifying control circuits

Two types: Boolean and word

Comparison and logic operators (no side-effects
or “short circuiting”)
Core construct: sequential conditional

[C1 : V1;C2 : V2; : : : 1 : Vn]
“Else” case written 1

Sequential Y86-64

Whole state update function is one big
combinational circuit
Express behavior of each instruction using
smaller computations
Processing split into stages for organization:

Fetch, decode, execute, memory, write back, PC
update

Simplest, but requires long cycle time (slow)

Pipelining basics

Split processing into stages, and work on
multiple instructions at once
Reduces cycle time and increases hardware
utilization
Pipeline registers hold data between stages

Performance concerns: balanced stages, and
not too many
Correctness concerns: must have same final
behavior

Pipelining techniques

Hazards: dependencies introduce danger of
incorrect results
Branch prediction: guesses result of conditional
jumps
Stalling: hold up instructions until data ready

Simple, but introduces a lot of delay
Used for return instruction in Y86-64

Cancelling: kill incorrect instructions
Must happen before they have side-effects
Used for branch mis-predictions

Forwarding: copy data to a different stage right
as needed

Outline

Topics in machine code

Announcements break

Topics in CPU architecture

Review questions

Calling conventions

According to the standard x86-64 calling
convention, which of these registers would your
function need to save before modifying it?

A. %rdi
B. %rsi
C. %r10
D. %rbx
E. %rax

x86-64 instructions

Which two instructions can be used to compare
%rax to zero?

A. cmp $0, %rax and test $0, %rax

B. cmp $0, %rax and test %rax, %rax

C. cmp %rax, %rax and test $0, %rax

D. cmp %rax, %rax and test %rax, %rax

for loops

Which of these while loop patterns is equivalent to
the loop for (A; B; C) { D; }?

A. A; while (B && C) { D; }

B. B; while (A) {D; C}

C. A; while (B) {C; D}

D. A; while (B) {C; D; C}

E. A; while (B) {D; C}

Structure padding

Because of padding, which of these structs would
not be the same size as the others?

A. struct { short s; long l; }

B. struct { float f; double d; }

C. struct { char c; long l; }

D. struct { long l1; long l2; }

E. struct { int i1; int i2; }

Y86-64 instructions

Which of these Y86-64 instructions is an indirect
jump?

A. call
B. ret
C. jmp
D. jle
E. jne

