Today

m Cache memory organization and operation

[ ]

Cache Memories 3

.

CSci 2021: Machine Architecture and Organization "

April 1st-3rd, 2020

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron
v , Compi e pective, Third Edition 1 Bryantand O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2
Example Memory

Hierarchy — '9/ge General Cache Concept

95\  CPU registers hold words

Smaller, retrieved from the L1 cache.
faster, L1/ L1 cache
and (SRAM) L1 cache holds cache lines
foes:“:re) L L2 cache retrieved from the L2 cache. .

P yte (SRAM) Smaller, faster, more expensive
storage L2 cache holds cache lines Cache | 4 ” 9 ” 10 ” 3 | memory caches a subset of
devices retrieved from L3 cache the blocks

L3: L3 cache
(SRAM) T :
L3 cache holds cache lines Data is copied in block-sized
Larger retrieved from main memory. -m transfer units
slower: L4: Main memory
and (DRAM) i ey e Larger, slower,.cpeapelr TR
cheaper T e (] Memory ([0 ][ 1 ][ 2 ][ 38 ]| viewedaspartitionedinto “blocks
(per byte) from local disks | z ” S ” S ” 7 |
storage | g Local secondary storage
devices (local disks) [ s J[ o [0 ][ 1]
Local disks hold files
retrieved from disks | 12 ” 13 ” 14 ” 15 |
on remote servers
L6: Remote secondary storage ¢0c0c0cccccccccccce
(e g., Web servers)
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Cache Memories General Cache Organization (S, E, B)
m Cache memories are small, fast SRAM-based memories 512’ lines per set
managed automatically in hardware - ‘/
= Hold frequently accessed blocks of main memory | || |' oo { '\l\
m CPU looks first for data in cache [ I [ee-] ]
m Typical system structure:
S=25sets | I Jeooeof ]
eeecscsccsccscsscscsccsssscae
CPU chip

Re |sterfle | Il Jeooof ]
memory
System bus Mem(lry bus Cache size:

- C=SxE x Bdata bytes
—@m [CIE==[CERESm]
memory ]

valid bit B = 2% bytes per cache block (the data)
o
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Cache Read Cho f any line n set Example: Direct Mapped Cache (E = 1)

has matching tag Direct mapped: One line per set

E = 2¢ lines per set * Yes + line valid: hit Assume: cache block size 8 bytes
- A ~ « Locate data starting
at offset
l ” l. = .l l Address of int:
f B .
| ” |“"| | Addresso |II| L ] |0|1|2|3|A|5|6|7l| thits | 0..01 | 100
- S~
S=25sets | Il Joooo ] g set  block El tag_| [o]1]2]3]4]s]6]7] find set
index offset §=2°sets
eecssccssccssccccscccscnne ||I| [ e | |o|1|z|3|4|5|s|7||
[ I XXX IQ
| T [[] o] CLREGEGEL|
IG] OoBEDm|
valid bit | —
B = 2P bytes per cache block (the data)
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Example: Direct Mapped Cache (E=1) Example: Direct Mapped Cache (E=1)

Direct mapped: One line per set

Direct mapped: One line per set
Assume: cache block size 8 bytes

Assume: cache block size 8 bytes

Address of int: . . Address of int:
valid? + match: assume yes = hit

|
.
[ Gee] CLEGEEEE]

valid? + match: assume yes = hit

.
[ e CLEGLEE0]
|

block offset block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced
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Direct-Mapped Cache Simulation E-way Set Associative Cache (Here: E = 2)
E = 2: Two lines per set
M=16 bytes (4-bit addresses), B=2 bytes/block, Assume: cache block size 8 bytes

Address of short int:

S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read): |. EEBEBEH EHEBHEE
( [0000,], miss

{3%11}’ o [ D] CLERGEGEH| [ Cee] CLRREERELL)
111,),

1
7
8 [1000,], miss
0

ool mis |Gl G ] OLEEEERE| [ Ced) CAEGELEELE])|

find set

v TG Block ®00c00c0000e00000000000000000000000c00c00000

eop 110 L Moy & DODBDBEGH) LEGLGH)|

Set2
set3[ 1 [ o M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

compare both

valid? + | match: yes = hit

|[ Cee] CEEEEELE| [ Ceed PREREGED)]

block offset
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2-Way Set Associative Cache Simulation

M=16 byte addresses, B=2 bytes/block,

S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

[0000,], miss

[0001,], hit

[0111,], miss

[1000,], miss

[0000,] hit
Tag Block

[0 [mio-1) ]

I
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Set0

Set1

[ [
< O ®NRO

Intel Core i7 Cache Hierarchy

Processor package
Core 0 Core 3

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

i
i

i

i

i

3 L2 unified cache:

3 256 KB, 8-way,
1 Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

L3 unified cache
(shared by all cores)
[

S

Main memory ‘

Block size: 64 bytes for
all caches.
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set
Assume: cache block size 8 bytes

Address of short int:

compare both

valid? + | match: yes = hit

([ e CEEEEGED| [ Ceel CEEGLEEED]
T

block offset

short int (2 Bytes) is here

No match:
* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...
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What about writes?

m Multiple copies of data exist:
= L1, L2, L3, Main Memory, Disk
= What to do on a write-hit?
= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)
= What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
m Typical
= Write-through + No-write-allocate
= Write-back + Write-allocate
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Cache Performance Metrics

m  Miss Rate
= Fraction of memory references not found in cache (misses / accesses)
=1-hitrate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.
m Hit Time
= Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2
m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)
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Let’s think about those numbers

m Huge difference between a hit and a miss
= Could be 100, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?
= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:
97% hits: 1 cycle +0.03 * 100 cycles = 4 cycles
99% hits: 1 cycle +0.01 * 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

, Comp er pective, Third Edition

Ignore the variables sum, i, j
assume: cold (empty) cache,
a[0][0] goes here,

2-way set associative

Rows/Columns Example

int sum array_rows(double a[16][16])
{

int i, j;

double sum = 0; v

for (i = 0; i < 16; i++)

for (j = 0; j < 16; j++)
sum += a[i][j];

return sum;

int sum array_cols(double a[16][16]) 328 =4 doubles

int i, 3;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[il[j];
return sum;
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Ignore the variables sum, i, j
assume: cold (empty) cache,
a[0][0] goes here,

2-way set associative

Rows/Columns Example

Y ||

int sum array_cols(double a[16][16]) 32B =4 doubles

{
int i, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)
sum += a[i][j];
return sum;
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Writing Cache Friendly Code

= Make the common case go fast

= Focus on the inner loops of the core functions

= Minimize the misses in the inner loops

= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories
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Rows/Columns Example

Ignore the variables sum, i, j
assume: cold (empty) cache,

{

int sum_array_rows (double a[16][16])

a[0][0] goes here,
2-way set associative

(I GI GI ) [ EIGIE
[BIGIal0|[ElGlalo]

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)
sum += a[i][j];
return sum;

[13] 14 [as] [ael]|[23] [ne] [a5] [ae]
H_J

32 B =4doubles
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Today

m Performance impact of caches

= The memory mountain
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The Memory Mountain

m Read throughput (read bandwidth)
= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.
= Compact way to characterize memory system performance.

y % og i
Core i7 Haswell
H 2.1 GHz
The Memory Mountain e dcache
256 KB L2 cache
Aggressive 8 MB L3 cache
prefetching . 64 B block size

16000 -

. 14000 -
Q
@
= 12000 -
E
£ 10000 -
El
2 8000 1 Ridges
A am — ofter!rporal
& locality
Slopes
of spatial S ek
locality ¥ ‘51‘2k 128k
5 ' om
Stride (x8 bytes) 9 Em Size (bytes)
o1 | %m
Logm
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Matrix Multiplication Example

T ———————— Variable sum
7 i3k */ held in register

for (i=0; i<n; i++) {
for (j=0; j<n; j++) { /
sum = 0.0;
for (k=0; k<n; k++)

sum += a[i] [k] * b[k][]];
c[i][j] = sum;

m Description:

= Multiply N x N matrices

= Matrix elements are
doubles (8 bytes)

= O(N3) total operations

= N reads per source
element

= N values summed per

L } matmult/mm.c
destination

= but may be able to
hold in register
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Memory Mountain Test Function

long data[MAXELEMS]; /*Global array to traverse */

I* test - Iterate over first "elems" elements of

. . Call test () with many
* array “data” with stride of "stride", using tombinationslofalens
* using 4x4 loop unrolling.

M and stride.

int test(int elems, int stride) {
long i, sx2=stride*2 =stride*3, sx4=stride*4;
long acc0 =0, acc 0,acc2 =0, acc3 =0;
long length = elems, limit = length - sx4;

For each elems
and stride:

1. Call test()
once to warm up
the caches.

[* Combine 4 elements at a time */
for (i=0; i <limit; i += sx4) {
acc0 = accO + datal[i];
accl = accl + data[i+stride]; 2. Call test()
acc2 = acc2 + datafi+sx2]; again and measure
acc3 = acc3 + data[i+sx3]; the read
} throughput (MB/s)
/* Finish any remaining elements */
for (; i <length; i++) {
acc0 = accO + datal[i];

return ((accO + accl) + (acc2 + acc3));

mountain/mountain.c

Today

= Rearranging loops to improve spatial locality
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Miss Rate Analysis for Matrix Multiply

= Assume:
= Block size = 32B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
= Cache is not even big enough to hold multiple rows
m Analysis Method:
= Look at access pattern of inner loop

i =|i

X |

C A B
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][i];
= accesses successive elements
® if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(ay) / B
m Stepping through rows in one column:
" for (i = 0; i < n; i++)
sum += a[i] [0];
= accesses distant elements
= no spatial locality!
= miss rate = 1 (i.e. 100%)

pective, Third Edition

Matrix Multiplication (jik)

7% 3ik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { =1
sum = 0.0; g tlﬁ
for (k=0; k<n; ki+) (i,*)
A B

sum += a[i] [k] * b[k][]];

clil[3] = sum l l l
}

Inner loop:

} matmult/mm.c Row-wise Column- Fixed
wise
Misses per inner loop iteration:
A B C
0.25 1.0 0.0
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Matrix Multiplication (ikj)
/* ikj */ X
for (i=0; i<n; i++) { i e
for (k=0; k<n; k++) { (i, k) E(k’*)g
r = a[i] [k]; L] (%)
for (j=0; j<n; j++) A B C
cl[i]l[3j] += r * b[k][3];
}
) Al /G Fixed Row-wise Row-wise

Misses per inner loop iteration:
A B C

0.0 0.25 0.25
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Matrix Multiplication (ijk)

/* i3k */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { i
e o []]
for (k=0; k<n; k++) (i,%)

sum += a[i] [k] * b[k][j]; A B c

cl[il[3] = sum; | | |
}

} matmult/mn.c | Row-wise Column-  Fixed
wise

Inner loop:

Misses per inner loop iteration:
A B C
0.25 1.0 0.0
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Matrix Multiplication (kij)

7* kij */
for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i][k];
for (j=0; j<n; j++)
c[i][j] += r * b[k][3];

Inner loop:

E (k'*)g (i,*)
B C

} matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B (¢
0.0 0.25 0.25
c g pective, Third Edition

Matrix Multiplication (jki)

7% 3ki */ Inner loop:
for (3j=0; j<n; j++) { (*,k) (%)
for (k=0; k<n; k++) {
r = b[k][3];
for (i=0; i<n; i++) A ©
c[i][3] += a[i]l[k] * z;
}
} matmult/mm.cf Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B (9
1.0 0.0 1.0

grammer's Perspective, Third Edition



Matrix Multiplication (kiji)

/* kji */
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { *K)
r = b[k]1[j];

for (i=0; i<n; i++)

Inner loop:

Cli][3] += alil[k] * r; A
’ |
} matmult/mm.c
Column- Fixed Column-
wise wise
Misses per inner loop iteration:
A B C
1.0 0.0 1.0
, Co ogr P , Third Edition 31

Core i7 Matrix Multiply Performance

100

iki / ki
2 iijk / jik
g 10
&
1

50 100 150 200 250 300 350 400 450 500 550 600 650 700
Array size (n)
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Example: Matrix Multiplication

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {
int i, j, k;
for (i = 0; i < n; i++)
for (3 = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] 4= a[i*n + k] * b[k*n + j];
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Summary of Matrix Multiplication

for (i=0; i<n; i++) (
for (j=0; j<n; j++) { T o
sum = 0.0, ijk (& jik):
for (k=0; k<n; k+) * 2 loads, 0 stores
sum += a[i] [k] * b[k][]j]; * misses/iter = 1.25

c[i]l[j] = sum;

}

}

for (k=0; k<n; k++) {

for (i=0; i<n; i++) { kij (& ikj):
r = al[i] [k]; * 2 |oads, 1 store
for (3=0; j<n; j++) * misses/iter = 0.5
c[i][3] += © * b[k]1[3];

}

}

for (3=0; j<n; j++) {

for (k=0; k<n; k++) { jki (& kiji):
r = bkl [j]; * 2 loads, 1 store
Haw ((=0p kg ) * misses/iter = 2.0

c[il[3] += a[il[k] * r;
}
Bryantand O'Hallaron, | } Ed

= Using blocking to improve temporal locality
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Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

n
m First iteration: —
= n/8+n=9n/8 misses
= *
= Afterwards in cache:
(schematic) - —
= *
8 wide
c grammer's Perspectiv, ThirdEdtion 2




Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)

m Second iteration:
= Again:
n/8 + n = 9n/8 misses

8 wide
m Total misses:
" 9n/8 * n2=(9/8) * n?

v G o pective, Third Edition

Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C

B block:
m First (block) iteration: G

= B2/8 misses for each block M
2n/B * B2/8 = nB/4
(omitting matrix c)

Blo

size Bx B

Afterwards in cache u
(schematic)

HEEEEE> EANEEE
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Blocking Summary

m No blocking: (9/8) * n?
m Blocking: 1/(4B) * n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= Input data: 3n%, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly
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Blocked Matrix Multiplication

c

= (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i+=B)
for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; i+4)
for (31 = j; 31 < J+B; j++)
for (k1 = k; k1 < k+B; k++)
c[il*n+jl] += a[il*n + k1]*b[kl*n + j1];
matmult/bmm.c

i
c a b = c
= * [ | +
[ ] Gy ] ] =
7y
o Block size B x B
Cache Miss Analysis
m Assume:
® Cache block = 8 doubles
= Cache size C << n (much smaller than n)
= Three blocks M fit into cache: 3B2< C
n/B blocks
m Second (block) iteration: f
= Same as first iteration ] 1T T 1] [ ]
= 2n/B *BY/8=nB/4 _ . H
[ |
[ ]

m Total misses:
= nB/4* (n/B)?=n3/(4B)

Block size Bx B
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Cache Summary

m Cache memories can have significant performance impact

= You can write your programs to exploit this!
= Focus on the inner loops, where bulk of computations and memory
accesses occur.
= Try to maximize spatial locality by reading data objects with
sequentially with stride 1.
= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.
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