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Midterm 1 topics (in one slide)

The C language
Functions, variables, and types
Branches and loops
Arrays, pointers, and structures

Number representation
Bits and bitwise operators
Unsigned and signed integers
Floating point numbers

Machine-level code representation
Instructions, operands
Arithmetic and addressing modes
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C compared to other languages

Predecessor of C++, Java, other more modern
languages
No objects, for instance functions and no
methods
Most features have a direct translation to
machine code

C numeric types

char, short, int, and long are 8, 16, 32, or
64 bits on x86-64
Unsigned integers are � 0

Mixed operands upgraded to larger size and
unsigned
float and double are 32-bit and 64-bit
floating point

Kinds of variables and allocation

Local variables exist in one function execution,
and go away when it is over

Even if you think you have a pointer to it!

Global variables can be accessed from any
function, and last for the whole program
For more control, allocate memory with malloc

and get a pointer



C strings

Instead of a real string type, C programs pass
pointers to characters
Usually, length of string is indicated by a \0

terminator
Transform strings by writing loops over
characters
Programmer needs to be explicit about
allocation and sharing

C pointers

Pointers hold addresses, and the compiler
knows their type
Create a pointer to a variable with &

Dereference a pointer with *

Pointer arithmetic uses the element size, like an
array
In fact, a[x] is the same as *(a + x)

More about pointers

Pointer parameters implement pass by
reference
The null pointer doesn’t point at anything

So don’t dereference it

When using pointers, pay attention to data
lifetime and sharing

C structures

A struct groups several related values
together

Similar to objects with features removed

Commonly structs are accessed with pointers,
fields with ->

For instance, to implement linked lists and trees

malloc with the structure size is like new

For instance, HA1 search tree

Every search tree node is a struct

Each allocated with malloc

Choices for string storage:
Struct has char pointer, can reuse slurped storage
Struct has char array, use strcpy

Struct has char pointer, use strdup

Optionally, remember string length
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Exam rules

Begins promptly at 3:35, ends promptly at 4:25

Open-book, open-notes, any paper materials OK

No electronics: no laptops, smartphones,
calculators, etc.

No arithmetic on big numbers needed

Leave at least one seat between students

Exam strategy suggestions

Writing implement: mechanical pencil plus good
eraser
Make a summary sheet to save flipping though
notes or textbook
Show your work when possible

Do the easiest questions first

Allow time to answer every question
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Bits and bitwise operations

Base 2 (binary) and base 16 (hex) generalize
from base 10 (decimal)
And, or, xor, not

Left shift, two kinds of right shift
Similarity to multiply/divide by 2

k

Unsigned and signed integers

Unsigned: plain base 2, non-negative
Overflow is like operations modulo 2

n

Signed: two’s complement with a sign bit
Sign bit counts for negative place value
Overflow possible in both directions

Comparing the two
Ranges partially overlap
+, -, * (same size output), <<, ==, narrowing are the
same
/, %, >>, <, * (high output bits), and widening are
different

Algebra properties exist despite overflow

Floating point numbers

Represent fractions and larger numbers using
binary scientific notation

Fractions whose denominator is a power of two
All others must be rounded
Limited precision gradually loses information

Rounding: examine thrown-away bits

Special cases for +/- 0, +/- 1, NaN

Ordering properties but fewer algebraic
properties



Normalized and denormalized

All but the smallest finite numbers are
normalized

Represent as 1:x � 2
e

(Leading 1 is not stored)

For smallest numbers, special denormalized
form

Smallest exp encoding: same E as smallest normal
Leading 0 is not stored
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Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF:
Unsigned OF, no signed OF:
Unsigned OF, positive OF:
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF:
Unsigned OF, positive OF:
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF:
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:



Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF: 1000 + 1000 = 0000
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF: 1000 + 1000 = 0000
No unsigned OF, positive OF: 0100 + 0100 = 1000
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF: 1000 + 1000 = 0000
No unsigned OF, positive OF: 0100 + 0100 = 1000
No unsigned OF, negative OF: can’t happen
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Instructions and operands

Assembly language $ machine code

Sequence of instructions, encoded in bytes

An instruction reads from or writes to operands
x86: usually at most one memory operand
AT&T: destination is last operand
AT&T shows operand size with b/w/l/q suffix

Addressing modes

General form: disp(base,index,scale)
Displacement is any constant, scale is 1, 2, 4 or 8
Base and index are registers
Formula: mem[disp+ base+ index � scale]

All but base are optional
Missing displacement or index: 0
Missing scale: 1
Drop trailing (but not leading) commas

Do same computation, just put address in
register: lea
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Working with ordering

Which of these conditions are the same?
x < y x > y x <= y x >= y

y < x y > x y <= x y >= x

!(x < y) !(x > y) !(x <= y) !(x >= y)

!(y < x) !(y > x) !(y <= x) !(y >= x)

Working with ordering

Which of these conditions are the same?
Col. 1 Col. 2 Col. 3 Col. 4

A:x < y B:x > y C:x <= y D:x >= y

B:y < x A:y > x D:y <= x C:y >= x

D:!(x < y) C:!(x > y) B:!(x <= y) A:!(x >= y)

C:!(y < x) D:!(y > x) A:!(y <= x) B:!(y >= x)


