
CSci 2021: Review Lecture 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Midterm 1 topics (in one slide)

The C language
Functions, variables, and types
Branches and loops
Arrays, pointers, and structures

Number representation
Bits and bitwise operators
Unsigned and signed integers
Floating point numbers

Machine-level code representation
Instructions, operands
Arithmetic and addressing modes

Outline

C language topics

Exam logistics

Topics in number representation

Number representation problem

Topics in machine code

Machine code problems

C compared to other languages

Predecessor of C++, Java, other more modern
languages
No objects, for instance functions and no
methods
Most features have a direct translation to
machine code

C numeric types

char, short, int, and long are 8, 16, 32, or
64 bits on x86-64
Unsigned integers are � 0

Mixed operands upgraded to larger size and
unsigned
float and double are 32-bit and 64-bit
floating point

Kinds of variables and allocation

Local variables exist in one function execution,
and go away when it is over

Even if you think you have a pointer to it!

Global variables can be accessed from any
function, and last for the whole program
For more control, allocate memory with malloc

and get a pointer



C strings

Instead of a real string type, C programs pass
pointers to characters
Usually, length of string is indicated by a \0

terminator
Transform strings by writing loops over
characters
Programmer needs to be explicit about
allocation and sharing

C pointers

Pointers hold addresses, and the compiler
knows their type
Create a pointer to a variable with &

Dereference a pointer with *

Pointer arithmetic uses the element size, like an
array
In fact, a[x] is the same as *(a + x)

More about pointers

Pointer parameters implement pass by
reference
The null pointer doesn’t point at anything

So don’t dereference it

When using pointers, pay attention to data
lifetime and sharing

C structures

A struct groups several related values
together

Similar to objects with features removed

Commonly structs are accessed with pointers,
fields with ->

For instance, to implement linked lists and trees

malloc with the structure size is like new

For instance, HA1 search tree

Every search tree node is a struct

Each allocated with malloc

Choices for string storage:
Struct has char pointer, can reuse slurped storage
Struct has char array, use strcpy

Struct has char pointer, use strdup

Optionally, remember string length

Outline

C language topics

Exam logistics

Topics in number representation

Number representation problem

Topics in machine code

Machine code problems



Exam rules

Begins promptly at 3:35, ends promptly at 4:25

Open-book, open-notes, any paper materials OK

No electronics: no laptops, smartphones,
calculators, etc.

No arithmetic on big numbers needed

Leave at least one seat between students

Exam strategy suggestions

Writing implement: mechanical pencil plus good
eraser
Make a summary sheet to save flipping though
notes or textbook
Show your work when possible

Do the easiest questions first

Allow time to answer every question

Outline

C language topics

Exam logistics

Topics in number representation

Number representation problem

Topics in machine code

Machine code problems

Bits and bitwise operations

Base 2 (binary) and base 16 (hex) generalize
from base 10 (decimal)
And, or, xor, not

Left shift, two kinds of right shift
Similarity to multiply/divide by 2

k

Unsigned and signed integers

Unsigned: plain base 2, non-negative
Overflow is like operations modulo 2

n

Signed: two’s complement with a sign bit
Sign bit counts for negative place value
Overflow possible in both directions

Comparing the two
Ranges partially overlap
+, -, * (same size output), <<, ==, narrowing are the
same
/, %, >>, <, * (high output bits), and widening are
different

Algebra properties exist despite overflow

Floating point numbers

Represent fractions and larger numbers using
binary scientific notation

Fractions whose denominator is a power of two
All others must be rounded
Limited precision gradually loses information

Rounding: examine thrown-away bits

Special cases for +/- 0, +/- 1, NaN

Ordering properties but fewer algebraic
properties



Normalized and denormalized

All but the smallest finite numbers are
normalized

Represent as 1:x � 2
e

(Leading 1 is not stored)

For smallest numbers, special denormalized
form

Smallest exp encoding: same E as smallest normal
Leading 0 is not stored

Outline

C language topics

Exam logistics

Topics in number representation

Number representation problem

Topics in machine code

Machine code problems

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF:
Unsigned OF, no signed OF:
Unsigned OF, positive OF:
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF:
Unsigned OF, positive OF:
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF:
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF:
No unsigned OF, positive OF:
No unsigned OF, negative OF:



Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF: 1000 + 1000 = 0000
No unsigned OF, positive OF:
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF: 1000 + 1000 = 0000
No unsigned OF, positive OF: 0100 + 0100 = 1000
No unsigned OF, negative OF:

Overflow

Which of these combinations can describe the
addition of the same bits? If possible, give an
example with 4-bit ints.

No unsigned OF, no signed OF: 0000 + 0000 = 0000
Unsigned OF, no signed OF: 1111 + 0001 = 0000
Unsigned OF, positive OF: can’t happen
Unsigned OF, negative OF: 1000 + 1000 = 0000
No unsigned OF, positive OF: 0100 + 0100 = 1000
No unsigned OF, negative OF: can’t happen

Outline

C language topics

Exam logistics

Topics in number representation

Number representation problem

Topics in machine code

Machine code problems

Instructions and operands

Assembly language $ machine code

Sequence of instructions, encoded in bytes

An instruction reads from or writes to operands
x86: usually at most one memory operand
AT&T: destination is last operand
AT&T shows operand size with b/w/l/q suffix

Addressing modes

General form: disp(base,index,scale)
Displacement is any constant, scale is 1, 2, 4 or 8
Base and index are registers
Formula: mem[disp+ base+ index � scale]

All but base are optional
Missing displacement or index: 0
Missing scale: 1
Drop trailing (but not leading) commas

Do same computation, just put address in
register: lea



Outline

C language topics

Exam logistics

Topics in number representation

Number representation problem

Topics in machine code

Machine code problems

Working with ordering

Which of these conditions are the same?
x < y x > y x <= y x >= y

y < x y > x y <= x y >= x

!(x < y) !(x > y) !(x <= y) !(x >= y)

!(y < x) !(y > x) !(y <= x) !(y >= x)

Working with ordering

Which of these conditions are the same?
Col. 1 Col. 2 Col. 3 Col. 4

A:x < y B:x > y C:x <= y D:x >= y

B:y < x A:y > x D:y <= x C:y >= x

D:!(x < y) C:!(x > y) B:!(x <= y) A:!(x >= y)

C:!(y < x) D:!(y > x) A:!(y <= x) B:!(y >= x)


