Machine-Level Programming Ill:
Procedures

CSci 2021: Machine Architecture and Organization
February 26th-28th, 2020
Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

These Slides

u Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data

Illustration of Recursion

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Stack: Push

Stack “Bottom”

m pushqg Src ‘

= Fetch operand at Src

= Decrement $rsp by 8
= Write operand at address given by $rsp

Stack Pointer: $rsp__,
o)
Stack “Top”

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mechanisms in Procedures

m Passing control
® To beginning of procedure code
® Back to return point
m Passing data
= Procedure arguments
= Return value
= Memory management
= Allocate during procedure execution
= Deallocate upon return
m Mechanisms all implemented with
machine instructions
m X86-64 implementation of a procedure
uses only those mechanisms required

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Stack

Bi) {

y = 0(x);
| >ptint (3)
}

\ \

¥
int Q(int 1)

I~ return vit];

}

2/26/2020

Stack “Bottom”

= Region of memory managed
with stack discipline

m Grows toward lower addresses

m Register $rsp contains
lowest in-use stack address
= address of “top” element

Stack Pointer: $rsp —

3 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Stack: Pop

a2

Stack “Top”

Stack “Bottom”

m popg Dest

® Read value at address given by $rsp

Increasing = Increment $rsp by 8
Addresses .
= Store value at Dest (usually a register)

Stack

Grows

Down .

Stack Pointer: $rsp®E?
s Sryant and Oallaron, Computer Systerns: A rogrammer's Perspectiv, Third Editon

. 2

Stack “Top”

Increasing
Addresses

Stack
Grows
Down

Increasing
Addresses

Stack
Grows
Down

Today

u Procedures
" Stack Structure
= Calling Conventions
= Passing control
= Passing data

= Managing local data

lllustration of Recursion

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Procedure Control Flow

m Use stack to support procedure call and return
m Procedure call: call label
® Push return address on stack
= Jump to label
u Return address:
= Address of the next instruction right after call
= Example from disassembly
m Procedure return: ret
= Pop address from stack
= Jump to address

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Control Flow Example #2

0000000000400540 <multstore>: atse °
. 0x128 .
. 0x120

400544: callg 400550 <mult2>
400549: mov $rax, ($rbx) < —0x118{ 0x400549

0000000000400550 <mult2>:
400550: mov %rdi,%rax € |

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

2/26/2020

void multsto
Code Examples NEkde
long t =
*dest =

re
ng y, long *dest)

mult2(x, y);

0000000000400540 <multstore>:

400540: push Srbx # Save S$rbx
400541: mov $rdx, $rbx # Save dest
400544: callg 400550 <mult2> # mult2(x,y)
400549: mov $rax, ($rbx) # Save at dest
40054c: pop Srbx # Restore %rbx
40054d: retq # Return
long mult2 0000000000400550 <mult2>:
(long a, long b) 400550: mov $rdi, $rax # a
{ 400553: imul $rsi, $rax #a*b
long s = a * b; 400557: retq # Return
return s;
Bryant and O Halaron, Computer Systems: A Pogrammers Perspectie, Third Earian 8
Control Flow Example #1 .
0000000000400540 <multstore>: R °
. 0x128 o
° 0x120
400544: callg 400550 <mult2>
400549: mov %rax, (%rbx)
. $rsp

0000000000400550 <mult2>:
400550: mov

4rdi, srax

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Control Flow Example #3

0000000000400540 <multstore>:

400544: callg 400550 <mult2>
400549: mov

0000000000400550 <mult2>:
400550: mov %$rdi, $rax

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

orax, (3rbx) <} ——0x118 | 0x400549

%rip | 0x400544

0x130 .
0x128 .
0x120

Control Flow Example #4 .

0000000000400540 <multstore>: R=130 °
. 0x128 .
° 0x120

400544: callg 400550 <mult2>
400549: mov $rax, (%rbx)\

. %rsp 0x120
0x400549

0000000000400550 <mult2>:
400550: mov $rdi, $rax

400557: retqg

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Procedure Data Flow

Registers Stack
m First 6 arguments
cee
grdi “Diane’s
$rsi silk Arg n
$rdx
dress XX
%rex
%r8 costs Arg 8
”
%r9 $8 9 Arg7

-- Geoff Kuenning, HMC
= Return value

m Only allocate stack space
when needed

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today

= Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Interlude: binary-level GDB
= Managing local data

Illustrations of Recursion & Pointers

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Today

= Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data

® lllustrations of Recursion & Pointers

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

2/26/2020

void multstore
Data Flow (long x, long y, long *dest)
{
Examples long t = mult2(x, y);
*dest = t;
}

t in Srax

0000000000400540 <multstore>:
x in %rdi, y in %rsi, dest in %rdx

400541: mov %$rdx, $rbx
400544: callg 400550 <mult2> # mult2(x,y)

Save dest

400549: mov %rax, ($rbx) # Save at dest
long mult2 0000000000400550 <mult2>:
(long a, long b) # a in %rdi, b in %rsi
{ 400550: mov $rdi, $rax # a
long s = a * b; 400553: imul %rsi,%$rax #a*b
return s; # s in %rax
} 400557: retq # Return
Bryantand O Rataron, Comp A Programmar Perspecve, Tnra caman 1

Overview: GDB without source code

m GDB can also be used just at the instruction level

Source-level GDB Binary-level GDB

step/next

break <line number>
list

print <variable>
print <data structure>
info local

software watch

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

stepi/nexti

break *<address>

disas

print with registers & casts
examine

info reg

hardware watch

2/26/2020

Disassembly and stepping Binary-level breakpoints

m The disas command prints the disassembly of instructions m All breakpoints are actually implemented at the instruction
® Give a function name, or defaults to current function, if available level
= Or, supply range of addresses <start>, <end> or <start>, +<length> = info br will show addresses of all breakpoints
= If you like TUI mode, “layout asm” ® Sometimes multiple instructions correspond to one source location
= Shortcut for a single instruction: x/i <addr>, x/i $rip m To break at an instruction, use break *<address>
= disasm/r shows raw bytes too = Address usually starts with Ox for hex

m stepi and nexti are like step and next, but for m The until command s like a temporary breakpointand a
instructions continue

® Can be abbreviated si and ni = Works the same on either source or binary
® stepi goes into called functions, nexti stays in current one

" continue, return, and £inish work as normal

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition. 2 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 2

Binary-level printing Examining memory
u The print command still mostly uses C syntax, even when m The examine (x) command is a low-level tool for printing
you don’t have source memory contents
= Registers available with $ names, like $rax, $rip = No need to use cast notation
® Often want p/x, for hex m x/<format> <address>
m Use casts to indicate types = Format can include repeat count (e.g., for array)
®" p (char)$rl0 = Many format letters, most common are x for hex or d for decimal
" p (char *)$rbx = Size letter b/h/w/g means 1/2/4/8 bytes
m Use casts and dereferences to access memory m Example: x/20xg 0x404100
" p *(int *)$rcx = Prints first 20 elements of an array of 64-bit pointers, in hex

" p *(char **)S$r8
" p *((int*)$rbx + 1)
" p *(int*) ($rbx + 4)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 2 Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition z

More useful printing commands Hardware watchpoints
m info reg prints contents of all integer registers, flags m To watch memory contents, use print-like syntax with
= In TUI: layout reg, will highlight updates addresses
® Float and vector registers separate, or use info all-reg = watch *(int *)0x404170
m info frame prints details about the current stack frame m GDB’s “Hardware watchpoint” indicates a different
® For instance, “saved rip” means the return address implementation
m backtrace still useful, but shows less information " Much faster than software
= Just return addresses, maybe function names ® But limited in number

= Limited to watching memory locations only
m Watching memory is good for finding memory corruption

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition % Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition b

2/26/2020

Today Stack-Based Languages

m Languages that support recursion
= e.g, C, Pascal, Java

m Procedures

= Stack Structure

. . ® Code must be “Reentrant”
= Calling Conventions

) = Multiple simultaneous instantiations of single procedure
= Passing control

= Need some place to store state of each instantiation
= Arguments

= Passing data

= Managing local data .
= Local variables

= Return pointer
m Stack discipline
= State for given procedure needed for limited time

® lllustration of Recursion

= From when called to when return
® Callee returns before caller does
u Stack allocated in Frames
= state for single procedure instantiation

Sryant and O'Hallaron, Computer Systems: A rogrammers Perspective, Third Editon % Sryant and OHallaron, Computer Systems: A rogrammer's Perspectiv, Thrd Eiton 7
Call Chain Example Stack Frames
Previous
Example Frame
Y00 (=) Call Chain = Contents
{ . yoo ® Return information
n Frame Pointer: $rbp
. who (L) ® Local storage (if ne(eded) (Optional)
who () ; { who = Temporary space (if needed) Frame for
. . | e
) amI () ; am (...) amI amI :
DR (l Stack Pointer: $rsp ——
I(); .
?m_ ()_ amI = Management
} amI () ; l ® Space allocated when enter procedure Stack “Top”
. amT = “Set-up” code, also called “prolog”
2 * = Includes push by call instruction
® Deallocated when return

Procedure amI () is recursive = “Finish” code, also called “epilog”

= Includes pop by ret instruction

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition 2

. »
Stack Stack
Example Example
yoo (...) yoo %rbp yoo
¢ yoo l yoo
- - srap— who
. $rbp
who () ; who
o $rsp———
}
Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition £l Bryant and O'Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition El

Example

yoo

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Example

yoo

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

yoo

who

aml

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Stack

yoo

who

$rbp

amI

$rsp—

Stack
yoo
who
amI
amI

%rbp
amI
$rSp———

Stack
yoo
who

$rbp
amI
$rsp———

Example

yoo

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

yoo

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example

yoo

who

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

2/26/2020

Stack

yoo
who
amI
$rbp
amI
$rsp——
3
Stack

yoo

who

amI

$rbp
amI
$rsp———
3
Stack
yoo
%$rbp
who
$rsp——
o

Example

yoo

who

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Example

yoo (..)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example: incr

Stack
yoo
who

$rbp
amI
$rsp—

Stack

$rbp
yoo
$rsp—

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

long incr(long *p, long val) {
long x = *p;
long y = x + val;
P =y
return x;
}
incr: "
movqg (%rdi), %rax
addq %rax, %rsi $rdi Argument p
movqg %rsi, (%rdi) $rsi Argument val, y
ret $rax x, Return value

2/26/2020

Stack
Example
yoo
l yoo
who
%rbp
who
Srsp—r
Sryant and OHallaron, Computer Systems: A rogrammer's Perspectiv, Thrd Eiton)
x86-64/Linux Stack Frame
m Current Stack Frame (“Top” to Bottom)
= “Argument build:”
Parameters for function about to call Caller’s
® Local variables tame
) n A Arguments
If can’t keep in registers 7+
® Saved register context Frame pointer Return Addr
= 0Old frame pointer (optional) $rbp Old $rbp
(Optional)
Saved
m Caller Stack Frame Begisi
¥
® Return address Local
= Pushed by call instruction Variables
= Arguments for this call ATEer
Stack pointer B‘f"d
$rsp— | (Optional)

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example: Calling incr #1

long call_incr() {

Initial Stack Structure

long vl = 15213;
long v2 = incr(&vl, 3000);
return vl+v2;

} Rtn

address fe— 3rsp

call incr:
subg $16, %rsp
movqg $15213, 8(%rsp)

Resulting Stack Structure

movl $3000, %esi
leag 8(%rsp), %rdi
call incr

addq 8(%rsp), %rax

addq $16, srsp Rtn address
ret 15213 |—— %rsp+8
Unused |—— %Isp

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example: Calling incr #2

long call _incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return v1+v2;

Stack Structure

Rtn address

15213 |—— %rsp+8

call_incr:
subg $16, %rsp
movqg $15213, 8(%rsp)
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr
addq 8(%rsp), %rax
addg $16, %rsp
ret

Unused [—— %rsp

[regiier Lot |

$rdi &vl
$rsi 3000

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Example: Calling incr #4

long call_incr() {
long vl = 15213;
long v2 = incr(&vl, 3000);
return v1+v2;

Stack Structure

Rtn address

18213 [%rsp+8

Unused |«—— %rsp

call_incr:
subg $16, %rsp
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr
addq 8 (%rsp), %rax
addq $16, %rsp
ret

$rax Return value

Updated Stack Structure

Rtn address |-—— %$rsp

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Register Saving Conventions

u When procedure yoo calls who:

= yoo is the caller
= who is the callee

u Can register be used for temporary storage?

yoo:
.« .
movqg $15213, %rdx
call who
addq %rdx, %$rax

ret

= Contents of register $rdx overwritten by who

® This could be trouble — something should be done!

» Need some coordination

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

2/26/2020

Example: Calling incr #3

Stack Structure
long call_incr() {

long vl = 15213;
long v2 = incr(&vl, 3000);
return vl+v2;

Rtn address

18213 |—— %rsp+8

Unused |—— %Tsp

[negiier L) |

call_incr:
subgq $16, %rsp
movq $15213, 8(%rsp)

movl $3000, %esi srdi svl
leag 8(%rsp), %rdi]
call iner $rsi 3000

addq 8(%rsp), %rax
addq $16, %rsp

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Example: Calling incr #5

long call_inecr() { Updated Stack Structure

long vl = 15213;
long v2 = incr(&vl, 3000);
return v1+v2;

Rtn address |-—— $Trsp

call incr:
subq $16, brsp [Register_Uses) __|
movq $15213, 8(%rsp) $rax Return value
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr
addq 8(%rsp), %rax
addq $16, %rsp
ret l— %rsp

Final Stack Structure

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Register Saving Conventions

= When procedure yoo calls who:
= yoo is the caller
® who is the callee

m Can register be used for temporary storage?
m Conventions
= “Caller Saved”, a.k.a. “scratch”
= Caller saves temporary values in its frame before the call
= “Callee Saved”, a.k.a. “preserved”
= Callee saves temporary values in its frame before using
= Callee restores them before returning to caller

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Linux Register Usage #1 (scratch)

m ¥rax

= Return value

= Also caller-saved

= Can be modified by procedure
m %rdi, ..., $r9

= Arguments

= Also caller-saved

= Can be modified by procedure
= 3rl0, 3rll

= Caller-saved

= Can be modified by procedure

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Return value

$rdx

$rcx

Caller-saved

temporaries

Callee-Saved Example #1

Initial Stack Structure

long call incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

$r8

%rll

Rtn address

[— %rsp

call_incr2:
pushg %rbx
subqg $16, %rsp
movq %$rdi, %rbx
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8 (%rsp), %rdi
call incr
addgq %$rbx, %rax
addgq $16, %rsp
Popq $rbx
ret

Resulting Stack Structure

Rtn address

Saved $rbx
15213 [%rsp+8
Unused |«—— %rsp

Today

= Procedures
= Stack Structure
= Calling Conventions
= Passing control
= Passing data
= Managing local data
® lllustration of Recursion

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

x86-64 Linux Register

m $rbx, $rl2, $rl13, %rl4
= Callee-saved
® Callee must save & restore
= 3rbp
® Callee-saved
= Callee must save & restore
= May be used as frame pointer
= Can mix & match
m $rsp
= Special form of callee save

= Restored to original value upon
exit from procedure

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Callee-Saved Example

2/26/2020

Usage #2 (preserved)

T eciz |

call d
Temporaries

Special

#2

Resulting Stack Structure

long call_incr2(long x) {
long vl = 15213;
long v2 = incr(&vl, 3000);
return x+v2;

Rtn address

Saved $rbx

call_incr2:
pushg $rbx
subqg $16, %rsp
movqg %$rdi, %rbx
movq $15213, 8(%rsp)
movl $3000, %esi
leaq 8(%rsp), %rdi
call incr
addgq %$rbx, %rax
addq $16, %rsp
popq $rbx

ret
e— —
Bryant and O Hallaron, Comp: "AProgrammer' Perspective, Third Eation

Recursive Function

15213 |— %rsp+8

Unused |—— %rsp

Pre-return Stack Structure

Rtn address — grsp

/* Recursive popcount */
long pcount r(unsigned long x) {

if (x == 0)
return 0;
else

return (x & 1)
+ pcount_r(x >> 1);

pcount _r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushg %rbx
movq %$rdi, %$rbx

andl $1, %ebx
shrq $rdi

call pcount_r
addq %rbx, %rax

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Popq $rbx
.L6:
rep; ret

Recursive Function Terminal Case

/* Recursive popcount */ pcount_r:
long pcount_r(unsigned long x) { movl $0, %eax
if (x == 0) testg %rdi, %$rdi
return 0; je .L6
else pushg %rbx
return (x & 1) movq %$rdi, %$rbx
+ pcount_xr(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addq %rbx, %$rax
Popg $rbx

.L6:
N rep; ret
[Register_JUsels) ____[Tyee]
$rdi x Argument
$rax Return value Return value

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Recursive Function Call Setup

/* Recursive popcount */ pcount_r:
long pcount_r(unsigned long x) { movl $0, %eax
if (x == 0) testg %$rdi, %$rdi
return 0; je .L6
else pushg %rbx
return (x & 1) movqg %$rdi, %rbx
+ pcount_r(x >> 1); andl $1, %ebx
} shrqg $rdi
call pcount_r

addq %$rbx, %rax
PopPq %rbx

.L6:
. rep; ret
[Register _JUsels) ____J1yee]
$rdi x >> 1 Rec. argument
$rbx x &1 Callee-saved
Bryant and O'Hallaron, Computer Systems: A Programmer' Perspective Third Editon
Recursive Function Result
/* Recursive popcount */ pcount r:
long pcount_r(unsigned long x) { movl $0, %eax
if (x == 0) testqg %$rdi, %rdi
return 0; je .L6
else pushg $rbx
return (x & 1) movqg %$rdi, %rbx
+ pcount_r(x >> 1); andl $1, %ebx
} shrq $rdi
call pcount_r

addq %rbx, %rax
POopPg %rbx

.L6:
7 rep; ret
[Register_JUsels) ____[Type]
%$rbx x &1 Callee-saved
%rax Return value

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recursive Function Register Save

/* Recursive popcount */
long pcount r(unsigned long x) {

if (x == 0)
return 0;
else

return (x & 1)
+ pcount_r(x >> 1);

[regoer useis e

$rdi x Argument

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Recursive Function Call

/* Recursive popcount */
long pcount r(unsigned long x) {

if (x == 0)
return 0;
else

return (x & 1)
+ pcount_r(x >> 1);

$rbx x &1 Callee-saved

$rax Recursive call
return value

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

o Jusl) o |

2/26/2020

pcount r:
movl $0, %eax
testqg %rdi, %rdi
je .L6
pushg %rbx
movqg %$rdi, %$rbx
andl $1, %ebx
shrq %rdi
call pcount_r
addq %rbx, %rax
Popq $rbx

.L6:
rep; ret

Rtn address

Saved $rbx l—— %rsp

Recursive Function Completion

/* Recursive popcount */
long pcount r(unsigned long x) {

if (x == 0)
return 0;
else

return (x & 1)
+ pcount_r(x >> 1);

[regoer useis e

$rax Return value Return value

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

pcount_r:
movl $0, %eax
testqg %$rdi, %rdi
je .L6
pushgq $rbx
movq %rdi, %rbx
andl $1, %ebx
shrq $rdi
call pcount_r
addq %$rbx, %rax
PopPq %rbx
L6:
rep; ret
6
pcount _r:
movl $0, %eax
testq %rdi, %rdi
je .L6
pushg %$rbx
movq %$rdi, %$rbx
andl $1, %ebx
shrq $rdi
call pcount_r
addq %rbx, %rax
Popq % rbx
.L6:
rep; ret0
l— %rsp

10

Observations About Recursion

= Handled Without Special Consideration
= Stack frames mean that each function call has private storage
= Saved registers & local variables
= Saved return pointer

= Register saving conventions prevent one function call from corrupting

another’s data

= Unless the C code explicitly does so (e.g., buffer overflow in Lecture 9)

= Stack discipline follows call / return pattern
= If P calls Q, then Q returns before P
= Last-In, First-Out

u Also works for mutual recursion
" Pcalls Q; Qcalls P

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition.

Recursive function examples

m void loop(void) { loop(); }

int fact(unsigned n, int prod) {
if (n == 0)
return prod;
else
return fact(n - 1, n * prod);

}

m But if storing a value across a call, the stack is needed

= |f caller-save, need to save because callee will use it
= |f callee-save, need to save caller’s value
= Changing the calling convention would not help

2/26/2020

Discussion interlude

m Does a recursive function always have to save one or more
registers on the stack?
= |f yes, why?
®= |f no, what’s an example of a function that doesn’t need to?

x86-64 Procedure Summary

= Important Points
= Stack is the right data structure for procedure call
/ return Caller
= If P calls Q, then Q returns before P Lane et
m Recursion (& mutual recursion) handled by 7+
normal calling conventions Return Addr
q . $rbp — %
= Can safely store values in local stack frame and in (Optiof\af; Oldberbp
callee-saved registers saved
= Put function arguments at top of stack Registers
® Result return in $rax 0 * .
.oca
m Pointers are addresses of values Variables
= On stack or global
Argument
Build
$rsp—

Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition]

11

