Course Overview and Introduction

CSci 2021: Machine Architecture and Organization
Lecture #1, January 22nd, 2020

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron

Course Theme:
Abstraction Is Good But Don’t Forget Reality

m Most CS courses emphasize abstraction
= Abstract data types
= Asymptotic analysis
u These abstractions have limits
= Especially in the presence of bugs
" Need to understand details of underlying implementations
u Useful outcomes
= Become more effective programmers
= Able to find and eliminate bugs efficiently
= Able to understand and tune for program performance
= Prepare for later “systems” classes in CS & EE

= Compilers, Operating Systems, Networks, Computer Architecture,
Embedded Systems

Code Security Example

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE] ;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel(void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

= Similar to code found in FreeBSD’s implementation of
getpeername

m There are legions of smart people trying to find vulnerabilities
in programs

Overview

m Course themes

u Four realities

m How the course fits into the CS curriculum
m Logistics

Great Reality #1:
Ints are not Integers, Floats are not Reals

m Example 1: Is x2 2 0?

[e A306... 1307 | | 327, -3 FLWT . 326
® Floats: Yes! - . -
w2 P
‘ A A L A §>i—/ |
" Ints: '

= 40000 * 40000 -> 1600000000
= 50000 * 50000 - ??
m Example 2:Is (x +y) +2z = x+ (y +2)?
® Unsigned & Signed Ints: Yes!
® Floats:
= (1e20 +-1e20) +3.14 -->3.14
= 120 +(-1€20 +3.14) —-> ??

Cartoon source: xked.com/571

Typical Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf [KSIZE] ;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel(void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

#define MSIZE 528

void getstuff() {
char mybuf [MSIZE] ;
copy_from_kernel (mybuf, MSIZE);
printf("$s\n", mybuf) ;

4

Malicious Usage

/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE] ;

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from kernel(void *user_dest, int maxlen) {
/* Byte count len is minimum of buffer size and maxlen */
int len = KSIZE < maxlen ? KSIZE : maxlen;
memcpy (user_dest, kbuf, len);
return len;

#define MSIZE 528

void getstuff() {
char mybuf [MSIZE] ;
copy_from kernel (mybuf, -MSIZE);

Great Reality #2:
You’ve Got to Know Assembly

m Chances are, you’ll never write full programs in assembly
= Compilers are much better & more patient than you are
m But, assembly is key to the machine-level execution model
= Behavior of programs in the presence of bugs
= High-level language models break down
® Tuning program performance
= Understand optimizations done or not done by the compiler
= Understanding sources of program inefficiency
= Implementing system software
= Compiler has machine code as target
= Operating systems must manage process state
= Creating / fighting malware
= x86 assembly is the lingua franca

Code to Read Counter

m Write small amount of assembly code using GCC’s asm facility

u Inserts assembly code into machine code generated by
compiler

/* Return the cycle count as a 64-bit integer */

unsigned long access_counter (void)
{
unsigned long high, low;
asm("rdtsc"
: "=d" (high), "=a" (low));
return (high << 32) | low;

Computer Arithmetic

m Does not generate random values
= Arithmetic operations have important mathematical properties
m Cannot assume all “usual” mathematical properties
= Due to finiteness of representations
= |nteger operations satisfy “ring” properties
= Commutativity, associativity, distributivity
= Floating point operations satisfy “ordering” properties
= Monotonicity, values of signs
m Observation
= Need to understand which abstractions apply in which contexts
® |mportant issues for compiler writers and serious application programmers

Assembly Code Example

u Time Stamp Counter
® Special 64-bit register in Intel-compatible machines
® Incremented every clock cycle
® Read with rdtsc instruction
m Application
= Measure time (in clock cycles) required by procedure

double t;

start_counter() ;

P();

t = get _counter() ;

printf ("P required %f clock cycles\n", t);

Great Reality #3: Memory Matters
Random Access Memory Is an Unphysical Abstraction

= Memory is not unbounded
® |t must be allocated and managed
= Many applications are memory dominated
m Memory referencing bugs are especially pernicious
= Effects are distant in both time and space
m Memory performance is not uniform
® Cache and virtual memory effects can greatly affect program performance

= Adapting program to characteristics of memory system can lead to major
speed improvements

Memory Referencing Bug Example

typedef struct {
int a[2];
double d;

} struct_t;

double fun(int i) {
volatile struct t s;
s.d = 3.14;
s.a[i] = 1073741824; /* Possibly out of bounds */
return s.d;

}

fun (0) - 3.14

fun (1) - 3.14

fun(2) - 3.1399998664856
fun(3) - 2.00000061035156
fun (4) - 3.14

fun(6) - Segmentation fault

® Result is system specific

Memory Referencing Errors

u C and C++ do not provide any memory protection
= Out of bounds array references
= |nvalid pointer values
= Abuses of malloc/free
m Can lead to nasty bugs
= Whether or not bug has any effect depends on system and compiler
= Action at a distance
= Corrupted object logically unrelated to one being accessed
= Effect of bug may be first observed long after it is generated
u How can | deal with this?
= Program in Java, Python, Ruby, ML, etc.
= Understand what possible interactions may occur
= Use or develop tools to detect referencing errors (e.g. Valgrind)

Why The Performance Differs

16000 -

14000 -
@
S 12000 -
2 10000 -
3 X
£ e
T 6000 -
&
4000 -
2000 - ”
copyJi
0+

)
T 1oek

512k
ST o~ =
Stride (x8 bytes) 59 e Size (bytes)

' aem

s11
128m

Memory Referencing Bug Example

typedef struct { fun (0) = 3.14
int a[2]; fun(l) - 3.14
double df fun (2) - 3.1399998664856
D CEEE {3 fun(3) - 2.00000061035156
fun (4) - 3.14
fun (6) = Segmentation fault
Explanation:
Critical State 6
? 5
? 4
d7 ... d4 3 Location accessed by
P
d3 ... do 2)
struct_t
= a[1] 1
a[o0] 0

Memory System Performance Example

void copyij(int src[2048][2048], void copyji(int src[2048][2048],

int dst[2048][2048]) int dst[2048][2048])
{ {
intij; intij;
for (i = 0; i < 2048; i++) or (j = 0; j < 2048; j++)
for (= 0; j < 2048; j++) == for (= 0; i < 2048; i++)
dsti][j] = src[il[i]; dsti][j] = src[illi];
}

21 times slower

(Pentium 4)
m Performance depends on access patterns
® Including how step through multi-dimensional array

m Hierarchical memory organization

Great Reality #4: There’s more to
performance than asymptotic complexity

m Constant factors matter too!

m And even exact op count does not predict performance
= Easily see 10:1 performance range depending on how code written
= Must optimize at multiple levels: algorithm, data representations,
procedures, and loops
= Must understand system to optimize performance
® How programs compiled and executed
® How to measure program performance and identify bottlenecks

® How to improve performance without destroying code modularity and
generality

Example Matrix Multiplication

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz (double precision)
Gflop/s
50000

1500

Best code (K. Goto)

Triple loop
: o 2250 4500 750 9.000

m Standard desk , vendor

= Both implementations have exactly the same operations count (2n%)
= What is going on?

, using optimization flags

Role within Computer Science

; Csci 5204)
Csci 4211 Csci 5271 Adv. Computer EEIEH
(s Security b Compilers
Csci 4061 a0 /
OSes Computer Machine
Architecture ity
Virtual
Memory CPUs, Logic

Machine Architecture and Organization
Underlying principles for hardware and
software

Csci 1[19)(13]3
, data structures

Things That Are Different This Semester

m Not committing to talk through every slide in lecture
= Will still cover the most important points, but leave time for more Q&A,
interaction, and demonstrations
= Slides posted on web site will include points skipped in class
= Also makes it more important to read the textbook
= If you like listening to lectures, multiple versions of lectures based on this
same textbook are available on YouTube
u Increased emphasis on Piazza for Q&A
= More powerful and easier to use than Canvas (or old Moodle) forums
= Works best if students participate a lot too
u Reduce number of major projects from 5 to 4
® Gives a little more time to work on each one
= But, each one is also more important to your grade

MMM Plot: Analysis

Matrix-Matrix Multiplication (MMM) on 2 x Core 2 Duo 3 GHz

Gflop/s
50000
—
37500
Multiple threads: 4x

25000
12500

] Vector instructions: 4x

o B Memory hierarchy and other optimizations: 20X
0 2,260 4,500 6,750 8,000
matrix size
m Reason for 20x: Blocking or tiling, loop unrolling, array scalarization,

instruction scheduling, search to find best choice
Effect: fewer register spills, L1/L2 cache misses, and TLB misses

Course Perspective

m Most Systems Courses are Builder-Centric
= Computer Architecture (CSci 4203)
= Design pipelined processor in Verilog
= Compilers (CSci 5161)
= Write compiler for simple language
m 2021 is Programmer-Centric
= Purpose is to show how by knowing more about the underlying system,
one can be more effective as a programmer
= Including, enable you to write programs that are more reliable and
efficient
® Not just a course for dedicated hackers
= We bring out the hidden hacker in everyone
= Cover material in this course that you won’t see elsewhere

Textbooks

m Required: Randal E. Bryant and David R. O’Hallaron,
= “Computer Systems: A Programmer’s Perspective, Third Edition”
(CS:APP3e), Prentice Hall, 2016
® http://csapp.cs.cmu.edu
= Paper version recommended
= Tests are open book, open notes, any paper, no electronics
= Used quite heavily
= How to solve assignments
= Practice problems with similar style as exam problems
m Supplemental: a book about C
= Labs, homework, and tests require reading and writing code in C
® One free tutorial is recommended on the course site
= Other tutorial/reference books can also substitute

http://csapp.cs.cmu.edu/

Course Components

m Lectures: Higher level concepts
u Lab sections
= Wednesdays in 1st floor of Keller. Try new ideas out in a supportive
environment, graded only on attendance.
m Projects (4)
= The heart of the course, fun but often time-consuming
= About 2-3 weeks each
= Provide in-depth understanding of an aspect of systems
® Programming and measurement
m Written Problem Sets (5)
® Practice thinking and writing, similar to tests, on paper
= Two midterms and a comprehensive final exam
= Test your understanding of concepts & mathematical principles

Policies: Assignments and Exams

= Groups? No.
= All homework assignments are individual work
= Hand-in process
= Project assignments due online, by 11:55pm on a weekday evening
= Problem sets due on paper, by start of class on Wednesdays
u Conflicts
= There will be no makeup midterms
= One excused missed midterm will be replaced by more weight on final
m Appealing grades
= Within 7 days of completion of grading
= Following procedure described in syllabus and Piazza
= Note, we will regrade the whole assignment/exam

Timeliness

m Late exercises and hands-on assignments
= Late period is 24 hours from due date, 85% credit
= For written assignments after class, bring to instructor’s office (4-225E
Keller)
® No credit after 24 hours
m Catastrophic events
= Major illness, death in family,
= Are an exception, and can be excused
u Advice
® The course is fast-paced

., (full list in syllabus)

® Once you start running late, it’s really hard to catch up

Electronic Resources

m Class Web Page:
= http://www-users.cs.umn.edu/classes/Spring-2020/csci2021/
= Complete schedule of lectures, exams, and assignments (coming)
= Lecture slides, assignments, practice exams, solutions (coming)
® Watch for announcements

m Canvas Page
= Online turn-in of hands-on assignments
= Grade information

= Where to send electronic questions?
1. Piazza forum
2. ¢52021520-010-staff@umn.edu (mailing list, for non-public Qs)
3. Individual staff members have higher latency

Facilities

u Do labs using CSELabs Linux machines
= Accessible from on-campus labs, or remotely (VOLE, SSH)
® Get an account if you don’t have one already, login with UMN account
name and password
= Can | use my own machine?
® Working on your own machines may sometimes be possible, but is not a
priority for support by course staff
= Grade based on how it runs on our machines, so at least be sure to test
there
= Ubuntu 18.04 Linux (maybe in a VM) will be closest to lab experience
® For Mac users, install GCC instead of Clang wrapper

Cheating

m What is cheating?

= Sharing code: by copying, retyping, looking at, or supplying a file

® Coaching: helping your friend to write a lab, line by line

= Copying code/text from previous course or from elsewhere on WWW
m What is NOT cheating?

= Explaining how to use systems or tools

= Helping others with high-level design issues

= Getting ideas from public books or web sites, if you give credit
m Penalty for cheating:

= Minimum: O grade on assignment or exam, report to campus OCS
m Detection of cheating:

= We check with both human and automated efforts

® Avoid surprises that would be unpleasant for all of us

mailto:cs2021s20-010-staff@umn.edu

E.g.: what if you find an answer online?

= “When | was feeling stumped on a problem set question, | did
some related web searches and accidentally discovered that it
had been answered on StackOverflow”
= (Note: not posted by a 2021 student or in response to a 2021 student

question)

= Don’t:
= Copy the answer from StackOverflow verbatim
= Reword the StackOverflow answer without acknowledgment

m Acceptable:

= Write your own answer to the question, based on what you learned on
StackOverflow, and credit the web resource

u Ethically preferable:
= Tell the staff or post on Piazza about the source

Exams schedule

m A schedule of readings, lecture topics, assignments, and exams
is now available on the course web site
m Put these exams in your calendar:
® Midterm 1: Monday February 24th, in class
= Midterm 2: Friday, April 10th, in class
® Final exam: Wednesday, May 13th, 8:00-10:00am

Data Representation

u Topics
= Bit-level operations
= Machine-level integers and floating-point
= C operators and things that can go wrong
m Assignments
= Proj2 (formerly “Data lab”): Manipulating bits

Policies: Grading

m Exams (60%): weighted 15%, 15%, 30% (final)

u Projects (20%)

= Written Problem Sets (15%)

m Attending at least 11 out of 14 lab sections (5%)

= Guaranteed:
" >85%: at least A-
® >72%: at least B-
® >60%: at least C-

m Curve:

= May apply, in your favor only, so that grade distribution is similar to
historical averages.

C Language Basics

u Topics

® Variables and operations, control flow and functions, data structures

= Differences from Java and high-level C++

= Just enough to get you started: various topics return in more depth later
m Assignments

® Projl: Write a modest 19x3-style program, but in pure C

Machine-level Program Representation

u Topics
= Assembly language programs
= Representation of C control and data structures
= E.g., what does a compiler do?
® How dynamic memory allocation works

m Assignments
= Proj3 (formerly “Bomb lab”): Defusing a binary bomb with a debugger
= Proj4 (formerly “Malloc lab”): Implement your own memory allocator

