
CSci Spring 2020 Section 010 Problem Set 3 Solutions

Problem 1

First, let’s walk through the effects of the math in the assembly code. We’re looking to understand the
computations in terms of the parameters i, j, and k:

access_multi: rdi = i, rsi = j, rdx = k
imulq $3360, %rdi, %rax rax = 3360*i
imulq $280, %rsi, %rcx rcx = 280*j
addq %rax, %rcx rcx = 3360*i + 280*j
leaq (%rcx,%rdx,8), %rsi rsi = 3360*i + 280*j + 8*k
sarq $3, %rsi rsi = 420*i + 35*j + k
movq $-1, %rax
cmpq $8399, %rsi
ja .LBB0_2 is rsi >= 8400?
movq multi(%rcx,%rdx,8), %rax multi + 3360*i + 280*j + 8*k

.LBB0_2:
retq

Each row is C elements, each two-dimensional “plane” is B ·C elements, and the whole array is A·B ·C
elements; the elements are longs, so the sizes in bytes are 8 times each of those. If m is short for the starting
address of the array, the (i, j, k)th element will be at the address m+8 ·(B ·C ·i+C ·j+k). Comparing this
expression with the effective address of the final movq, we see that 8 ·C is 280, so C is 35. 8 ·B ·C is 3360,
so B ·C is 420, so B must be 12. The above expression didn’t include A, but there’s an overflow check that
compares the effective address to the size of the array which does depend on A. The source code wrote the
comparison with >= but the compiled code uses >, so the bound has been adjusted by 1. Interestingly the
code does most of the computation including the factor of 8, but then takes it out with the right shift by 3, so
the size of the array in longs is 8399 + 1 = 8400. We can confirm that that is a multiple of 420, specifically
8400 = 20 · 12 · 35, so A is 20.

Problem 2

There are a number of possible solutions, but the computation is complicated enough that it’s helpful to think
about reusable patterns or abstractions. One of the most useful is the two-argument functions that compute
either the smaller or the larger of their two arguments, which are commonly called min (from minimum)
and max (from maximum).

To help illustrate what’s going on, we’ll show C code examples and then the corresponding Y86-64
examples. First off is min and max, which are often written a C preprocessor macros:

#define MIN(a, b) ((a) < (b) ? (a) : (b))
#define MAX(a, b) ((a) > (b) ? (a) : (b))

Implementing these functions with conditional moves illustrates the core technique for solving this prob-
lem.

min:
rrmovq %rdi, %rax # default: min(a, b) = a
rrmovq %rdi, %rcx

1

subq %rsi, %rcx
cmovg %rsi, %rax # if a > b, min(a, b) = b
ret

max:
rrmovq %rdi, %rax # default: max(a, b) = a
rrmovq %rdi, %rcx
subq %rsi, %rcx
cmovl %rsi, %rax # if a < b, max(a, b) = b
ret

Remember that Y86-64 doesn’t have a cmp instruction for comparing numbers. It does have the sub
instruction that subtracts two numbers and sets the condition code flags based on the comparison, but sub
also computes the difference in its destination register. Mostly in this question we don’t care about the value
of the difference, but we need to compute the difference in a different register to be able to reuse the values
we were comparing. These implementations use rcx as that scratch register. Following the standard calling
conventions, the two arguments a and b are in rdi and rsi respectively, and the result is returned via rax.
The basic structure is that we start off with a copy of a in rax, and then conditonally replace it with b if
the result should be b instead. Looking at min in detail, we compute a− b in rcx, which also sets the flags
representing the comparison result of a versus b. If a > b, then the minimum needs to be b, but otherwise
(including if they’re equal) it can be a, so that’s why we use g as the condition for the conditional move.
(You can also think of g as representing that the difference a− b is greater than 0, but it’s important that it is
based on the sign of the full difference not counting overflow.) After you understand min, max is the same
except with the condition flipped from greater-than to less-than. This is the analogous kind of flip to the
change we made in the C source versions, but the assembly versions are opposite because we’re giving the
condition for the result to be b whereas the C gives the condition for it to be a. There’s a distinction without
a difference about what the code does when a = b. For instance we could have used ge as the condition in
place of g, but it doesn’t matter which one you return in that case because they’re equal.

A related and more powerful abstraction that might be familiar to you from sorting algorithms is to exam-
ine two values, determine which is larger and which is smaller, and put them in a fixed order by interchanging
(swapping) them if they start out in the reverse order. We’ll refer to this abstraction as “compare-and-swap”.
Because it needs to modify two locations, in C or the standard calling conventions the arguments need to be
passed via pointers. One easy way to implement compare-and-swap is not to use swapping directly, but to
use min and max. Here’s a C version of that approach:

void compare_and_swap(long *p, long *q) {
long min = MIN(*p, *q);
long max = MAX(*p, *q);

*p = min;

*q = max;
}

This approach translates directly into Y86-64:

compare_and_swap_call:
pushq %r12
pushq %r13
pushq %r14
rrmovq %rdi, %r12 # r12 is a preserved copy of p

2

rrmovq %rsi, %r13 # r13 is a preserved copy of q
mrmovq (%r12), %rdi
mrmovq (%r13), %rsi
call min
rrmovq %rax, %r14 # r14 is min(*p, *q)
mrmovq (%r12), %rdi
mrmovq (%r13), %rsi
call max # rax ia max(*p, *q)
rmmovq %r14, (%r12) # *p = min
rmmovq %rax, (%r13) # *q = max
popq %r14
popq %r13
popq %r12
ret

Note how we used the preserved registers r12 through r14 to store copies of the arguments, since the
argument registers might be modified by min and max. Even though the versions of min and max we
showed above don’t modify rdi and rsi, following the standard calling conventions avoids trouble if you
change implementations later.

Using separate functions helps break down the complexity into more manageable pieces, but it doesn’t
always lead to the shortest solution, since there are more instructions moving data around. You can get a
shorter implementation of this function if you use the compare-and-swap concept more directly, and do the
swapping within the registers of a function:

compare_and_swap_inline:
mrmovq (%rdi), %r8 # r8 = *p
mrmovq (%rsi), %r9 # r9 = *q
rrmovq %r8, %rax
subq %r9, %rax
cmovg %r8, %rax
cmovg %r9, %r8
cmovg %rax, %r9 # swap r8 with r9 (via rax) if r8 > r9
rmmovq %r8, (%rdi) # *p = min(r8, r9)
rmmovq %r9, (%rsi) # *q = max(r8, r9)
ret

Notice that there are three cmovg instructions in a row. All these are conditional on the same comparison
(subtraction). The flags are like other registers in that they keep their values until replaced by another
instruction, and cmov itself doesn’t change the flags, so you can conditionally control several moves in a
row. Implementing swapping in terms of copying takes three copies and a temporary location: when the
condition is true, the three cmovg instructions swap r8 with r9 using rax for temporary storage. The
swap happens if r8 was bigger than r9, so after the swap r8 is always less than or equal to r9.

The first complete implementation of the median-of-3 we’ll show will look familiar if you remember
bubble sort. We use compare-and-swap operations to put the three values in order, and then choose the
middle one. Bubble sorting three elements takes only two passes with a total of three compare and swap
operations. The C code shows the structure clearly:

long median1(long a, long b, long c) {
compare_and_swap(&a, &b);

3

compare_and_swap(&b, &c);
compare_and_swap(&a, &b);
return b;

}

Note that the three calls to compare and swap do not take all three pairs of variables. Instead the
first two are like a first pass of bubble sort that moves that maximum value into the c position, and then the
final compare-and-swap is the second pass that makes sure the two elements that are not the maximum are
correctly sorted. (Some but not all other sequences of three calls would work equally well.)

Translating the compare-and-swap via pointers into Y86-64 is a little less convenient because of the
register-based calling convention: you have to copy the arguments to the stack to be able to pass pointers
to them. And constructing the stack addresses is slightly inconvenient because Y86-64 doesn’t have an
lea instruction. However the basic structure is straightforward: allocate 24 bytes on the stack, copy the
arguments there, call compare and swap with three different sets of pointers, then copy the middle value
to rax to return it:

median1_call:
irmovq $24, %rcx
subq %rcx, %rsp
rmmovq %rdi, 0(%rsp)
rmmovq %rsi, 8(%rsp)
rmmovq %rdx, 16(%rsp)
rrmovq %rsp, %rdi
rrmovq %rsp, %rsi
irmovq $8, %rcx
addq %rcx, %rsi
call compare_and_swap # compare_and_swap(0+rsp, 8+rsp)
rrmovq %rsp, %rdi
irmovq $8, %rcx
addq %rcx, %rdi
rrmovq %rdi, %rsi
addq %rcx, %rsi
call compare_and_swap # compare_and_swap(8+rsp, 16+rsp)
rrmovq %rsp, %rdi
rrmovq %rsp, %rsi
irmovq $8, %rcx
addq %rcx, %rsi
call compare_and_swap # compare_and_swap(0+rsp, 8+rsp)
mrmovq 8(%rsp), %rax # return 8(%rsp)
irmovq $24, %rcx
addq %rcx, %rsp
ret

You can get a shorter implementation of the same strategy by copying the code sequence from the direct
compare-and-swap above, three times. Then no other data movement is needed except copying rsi to rax
at the end:

median1_inline:
rrmovq %rdi, %rax

4

subq %rsi, %rax
cmovg %rdi, %rax
cmovg %rsi, %rdi
cmovg %rax, %rsi # Compare and swap %rdi with %rsi
rrmovq %rsi, %rax
subq %rdx, %rax
cmovg %rsi, %rax
cmovg %rdx, %rsi
cmovg %rax, %rdx # Compare and swap %rsi with %rdx
rrmovq %rdi, %rax
subq %rsi, %rax
cmovg %rdi, %rax
cmovg %rsi, %rdi
cmovg %rax, %rsi # Compare and swap %rdi with %rsi
rrmovq %rsi, %rax # return %rsi
ret

A second implementation strategy, which gives efficient code when implemented using conditional
jumps, is to divide up the different cases in a tree-like structure until the identity of the median is dis-
covered. This a good general divide-and-conquer (at coding time) way to implement any kind of complex
condition. If you start, without loss of generality, by comparing a with b, it then takes either one or two
more comparisons to locate c into one of the three ranges between a and b. In C, this looks like:

long median2(long a, long b, long c) {
if (a <= b) {

if (c <= a)
return a;

else if (c <= b)
return c;

else
return b;

} else {
/* b < a */
if (c <= b)

return b;
else if (c <= a)

return c;
else

return a;
}

}

This structure is less advantageous when translated into conditional moves, because there you always
have to do all of the comparisons. But the translation can be done systematically. To translate a chain of
if-then-else statements into conditional moves, you can reverse the order by initializing a register with the
else value first, and conditionally moving values to the same register based on the other conditions going
in reverse order. Reversing the order gives the right behavior because an if-then-else chain stops when it
reaches the first condition that is true. In a sequence of conditional moves, the execution never stops early,

5

but if more than one condition is true, the one that is evaluated last will take precedence. We can get the
effect of nested if-then-else chains by evaluating one chain into a separate register. In the code below, the
answer for the case a ≤ b is evaluated into r8, while the a > b is evaluated into rax, and then we use a
final conditional move to decide whether to move r8 into rax:

median2:
rrmovq %rsi, %r8
rrmovq %rdx, %rcx
subq %rsi, %rcx
cmovle %rdx, %r8 # if (c <= b) r8 = c;
rrmovq %rdx, %rcx
subq %rdi, %rcx
cmovle %rdi, %r8 # if (c <= a) r8 = a;
rrmovq %rdi, %rax
rrmovq %rdx, %rcx
subq %rdi, %rcx
cmovle %rdx, %rax # if (c <= a) rax = c;
rrmovq %rdx, %rcx
subq %rsi, %rcx
cmovle %rsi, %rax # if (c <= b) rax = b;
rrmovq %rdi, %rcx
subq %rsi, %rcx
cmovle %r8, %rax # if (a <= b) rax = r8;
ret

Next let’s consider a couple of different ways that you can build a median out of min and max. One
clever idea comes from the fact that the median is value that is left over after you remove the smallest value
and the largest value from among the three. You might informally call this a “set” approach, but if you
think about what needs to happen when there are duplicate elements, the right abstraction is actually what
mathematicians call a multiset, where duplicate elements count more than once. A sequence of multiset
operations that ends with just one result can be implemented with an arithmetic operator that has the right
properties of being associative, commutative, and having an inverse. Probably the easiest one to think about
is addition and subtraction. If you add together the three elements, then subtract out the smallest element and
the largest element, you’ll be left with the median element. You might want to think through what happens
if there are duplicate elements or if overflow occurs, but as it turns out everything works out fine. (And in
fact XOR can be used too.)

We’ve already discussed how to compute the smallest of two elements; computing the smallest of a
bigger set can be done just by repeating the operation. This leads to a short C implementation:

long median3(long a, long b, long c) {
long min = MIN(a, MIN(b, c));
long max = MAX(a, MAX(b, c));

return a + b + c - min - max;
}

This C implementation also translates fairly directly into Y86-64 code that calls the previously-defined
min and max functions, though with a number of instructions just to move data around:

6

median3_call:
pushq %r12
pushq %r13
pushq %r14
pushq %rbx
rrmovq %rdi, %r12 # %r12 is a preserved copy of a
rrmovq %rsi, %r13 # %r13 is a preserved copy of b
rrmovq %rdx, %r14 # %r14 is a preserved copy of c
call min # rax = min(a, b)
rrmovq %rax, %rdi
rrmovq %r14, %rsi
call min
rrmovq %rax, %rbx # rbx = min(a, b, c)
rrmovq %r12, %rdi
rrmovq %r13, %rsi
call max # rax = max(a, b)
rrmovq %rax, %rdi
rrmovq %r14, %rsi
call max # rax = max(a, b, c)
rrmovq %r12, %rcx
addq %r13, %rcx
addq %r14, %rcx # rcx = a + b + c
subq %rbx, %rcx
subq %rax, %rcx
rrmovq %rcx, %rax # rax = a + b + c - min - max
popq %rbx
popq %r14
popq %r13
popq %r12
ret

As we saw before, inlining the minimum and maximum computations leads to a shorter version of the
solution:

median3_inline:
rrmovq %rdi, %r8 # min = a
rrmovq %r8, %rax
subq %rsi, %rax
cmovg %rsi, %r8 # if a > b, min = b
rrmovq %r8, %rax
subq %rdx, %rax
cmovg %rdx, %r8 # if min > c, min = c
rrmovq %rdi, %r9 # max = a
rrmovq %r9, %rax
subq %rsi, %rax
cmovl %rsi, %r9 # if a < b, max = b
rrmovq %r9, %rax
subq %rdx, %rax

7

cmovl %rdx, %r9 # if max < c, max = c
rrmovq %rdi, %rax
addq %rsi, %rax
addq %rdx, %rax # rax = a + b + c
subq %r8, %rax
subq %r9, %rax # rax = a + b + c - min - max
ret

Another intuition that leads to an implementation in terms of minimum and maximum is based on an
operation that in signal processing and graphics is called “clamping”. Clamping enforces both a lower bound
and an upper bound on a value, so for instance if an integer is clamped between 0 and 255, any negative
value will be changed to 0, any value greater than 255 will be changed to 255, and values between 0 and
255 will be unchanged. Enforcing a lower bound is the same as computing a maximum between the varying
value and the lower bound, while dually enforcing an upper bound can be done as computing a minimum.
You can combine a minimum and a maximum to implement clamping. On the other hand, the median of
three values can also be implemented as a kind of clamping. Going with the intuition of the median being in
the middle when the values are sorted, the median can also be implemented by clamping one of the values
(say c) between the other two (a and b: this gives c if c is between a and b, the lower bound if c is too low, or
the upper bound if c is too high. However a and b have to be put in the right order (we need to know which
one is the upper bound and which one is the lower bound) for this to work; we’ve seen before we can do
that with min and max. Putting these ideas together gives this C implementation, where the last line is the
clamping:

long median4(long a, long b, long c) {
long min_ab = MIN(a, b);
long max_ab = MAX(a, b);
return MAX(min_ab, MIN(max_ab, c));

}

As with the last approach, this can be translated either more directly using calls to min and max, or by
inlining the minimum and maximum calculations. Here’s the version with calls:

median4_call:
pushq %r12
pushq %r13
pushq %r14
pushq %rbx
rrmovq %rdi, %r12 # %r12 is a preserved copy of a
rrmovq %rsi, %r13 # %r13 is a preserved copy of b
rrmovq %rdx, %r14 # %r14 is a preserved copy of c
call min
rrmovq %rax, %rbx # rbx = min(a, b)
rrmovq %r12, %rdi
rrmovq %r13, %rsi
call max
rrmovq %rax, %rdi # rdi = max(a, b)
rrmovq %r14, %rsi
call min
rrmovq %rax, %rsi # rsi = min(max(a, b), c)

8

rrmovq %rbx, %rdi
call max # return max(min(a, b), min(max(a, b), c))
popq %rbx
popq %r14
popq %r13
popq %r12
ret

And here’s the version with the computations inline:

median4_inline:
rrmovq %rdi, %rcx
rrmovq %rdi, %r8
subq %rsi, %rcx
cmovg %rsi, %r8 # r8 = min(a, b)
rrmovq %rdi, %rcx
rrmovq %rdi, %r9
subq %rsi, %rcx
cmovl %rsi, %r9 # r9 = max(a, b)
rrmovq %r9, %rcx
rrmovq %r9, %rax
subq %rdx, %rcx
cmovg %rdx, %rax # rax = min(r9, c)
rrmovq %rax, %rcx
rrmovq %rax, %rax # from pattern, but skip because it’s a no-op
subq %r8, %rcx
cmovl %r8, %rax # rax = max(r8, rax)
ret

You can see that this code consists entirely of four copies of the min and max computation sequences
(in the order min, max, min, max), just over different variables. We’ve commented out one move of rax to
itself which would be produced by following the pattern, since obviously that operation has no effect.

Last but not least, another generic approach to writing the median as a conditional is to group together
all the cases under which the median would be a, and all the cases when it would be b; then in any remaining
cases it would be c. A somewhat related practice problem in the textbook asks you to write the median of
three values in HCL, and the textbook’s solution takes this approach. Translating the textbook’s answer
from HCL into C gives:

long median5(long a, long b, long c) {
if (a <= b && b <= c)

return b;
else if (c <= b && b <= a)

return b;
else if (b <= a && a <= c)

return a;
else if (c <= a && a <= b)

return a;
else

return c;

9

}

Because of the complex and repetitive conditions, this is not the shortest implementation to translate
into conditional moves, but it can be done with the same basic structure of converting an if-then-else chain
backwards that we deployed before. The one thing that complicates things is those logical AND operators.
One way to compile an AND operation that makes sense given its name is to represent true-false values as 0
or 1 (on x86-64 you could do this with setCC, or on Y86-64 you could use irmovq and cmov), and then
to compute the AND with andq. That approach would be pretty cumbersome, though.

Another approach that works a bit more easily is related to the more common way of compiling log-
ical AND: to use nested branches. In C, the branch if (A && B) C; else D; is equivalent to the
nested branches if (A) { if (B) C; else D; } else D;. A compiler would commonly com-
pile such an if statement into two conditional branches, with just one copy of the D code. You can use a
similar approach to translate an AND condition into two conditional moves.

Another intuition is that if you have a conditional move from X to Y, followed by a conditional move
from Y to Z, the net effect will only copy the value from X to Z if both the conditions are true. In translating
this idea into conditional moves between registers, we initialize Y and Z with the old value of Z, and put the
potential new value of Z in X; then Z will be updated to X only if both conditional moves happen. In the
other three combinations, Z will either never be modified, or it will get copied from Y without Y changed,
so it will stay unchanged.

This leads to a repetitive code structure:

median5:
rrmovq %rdx, %rax
rrmovq %rax, %r8
rrmovq %rdx, %rcx
subq %rdi, %rcx
cmovle %rdi, %r8 # if (c <= a) r8 = a;
rrmovq %rdi, %rcx
subq %rsi, %rcx
cmovle %r8, %rax # if (c <= a && a <= b) rax = a;
rrmovq %rax, %r8
rrmovq %rsi, %rcx
subq %rdi, %rcx
cmovle %rdi, %r8 # if (b <= a) r8 = a;
rrmovq %rdi, %rcx
subq %rdx, %rcx
cmovle %r8, %rax # if (b <= a && a <= c) rax = a;
rrmovq %rax, %r8
rrmovq %rdx, %rcx
subq %rsi, %rcx
cmovle %rsi, %r8 # if (c <= b) r8 = b;
rrmovq %rsi, %rcx
subq %rdi, %rcx
cmovle %r8, %rax # if (c <= b && b <= a) rax = b;
rrmovq %rax, %r8
rrmovq %rdi, %rcx
subq %rsi, %rcx
cmovle %rsi, %r8 # if (a <= b) r8 = b;

10

rrmovq %rsi, %rcx
subq %rdx, %rcx
cmovle %r8, %rax # if (a <= b && b <= c) rax = b;
ret

In this code, rax plays the role described as Z above, the location that is getting conditionally updated.
It starts out as c, under some conditions it is updated to a or b, and then it is the return value. Register r8
plays the role of Y, and rcx is just used for subtraction.

Problem 3

You should recall here the discussion of signed overflow in twos-complement from earlier in the class. A sum
that is the same size as the arguments can’t always reflect the correct value of a sum if it’s outside the range
of representable numbers. The sum is always representable if the two numbers being added have different
signs; overflow is possible if they have the same sum. The correct sum of two non-negative numbers is
always non-negative, but if the sum of two positive numbers appears to be negative, that’s positive overflow.
Conversely the correct sum of two negative numbers is always negative, but if the sum of two negative
numbers appears to be non-negative, that’s negative overflow. In defining the boundary conditions you
should be careful about 0. Adding 0 never overflows, and 0 + 0 = 0 is not an overflow, but TMin + TMin
= 0 is negative overflow.

In the HCL case notation, those conditions can be written:

bool overflow = [
A >= 0 && B >= 0 && S < 0: 1;
A < 0 && B < 0 && S >= 0: 1;
1 : 0;

];

That’s easiest to read, and we would accept it, but HCL case notation is only used for word values and
not for Boolean values, so technically the two overflow cases should be combined with logical OR instead:

bool overflow =
(A >= 0 && B >= 0 && S < 0) ||
(A < 0 && B < 0 && S >= 0);

Problem 4

There are 2 set index and 2 byte offset bits each. The remaining bits are for the tag.

T T T T T T T T I I O O
11 10 9 8 7 6 5 4 3 2 1 0

Using the above format we can extract the bits identifying the tag, set index, and line offset. With these
we can identify the cache line and inspect the tags and valid bits to determine if there was a hit.

Address T I O Effect
0x5AA 5A 2 2 Miss, tag match but invalid
0xA62 A6 0 2 Hit, read byte 2 yields 0xA0
0x7A7 7A 1 3 Miss, tag match but invalid
0xDAC DA 3 0 Hit, read byte 0 yields 0x8A

11

