
CSci Spring 2020 Section 010 Problem Set 2

Due in plain text or PDF format on Canvas at the beginning of lecture (3:35pm) on Wednesday, April 8th,
2020. We recommend that you type your solutions with a text editor or word processor and then convert
them to PDF. Please label your assignment with your name, UMN email address, and the time of your lab
section (12:10 pm, 1:25 pm, or 2:30 pm).

Problem 1

Background on division: This problem uses the idivq instruction for division that has not been covered
in lecture. You can read more about it in Section 3.5.5 of the textbook, and we’ll describe the basics here.
Here is a brief description of how 64-bit signed division works in x86-64:

• The idivq instruction can actually support a 128-bit dividend, with the high 64 bits in %rdx and the
low 64 bits in %rax.

• A 64-bit dividend should be sign-extended to make the right 128-bit dividend.
• Start with the 64-bit dividend in %rax.
• Sign-extend from %rax to %rdx using the cqto instruction.
• The divisor can be placed in any 64-bit register.
• idivq takes one register as an argument which is the register that has the divisor in it.
• After idivq, the %rax register holds the quotient, while the %rdx register holds the remainder.

Fill in the blanks of the assembly code generated from the following C function and explain what the function
does, what the parameters and variables are, and what conclusions can be made based on the return value of
the function. Assume 64-bit operations and the first argument register in the assembly code contains long n
at the start of the program. In answer, use the letters a through i to label the values you fill in the blanks.
For the short answer part j, be precise.

int function_c(long n){ function_asm:
if(n<=1){ cmpq $1, %rdi

return 0; ___ .E2 a.
} movq %rdi, %rax
long i=2; cqto
while(i<=n/2){ movq $2, %rsi

if(n%i==0) idivq %rsi
return 0; ___ %rax, %r11 b.

else .L1:
i++; cmpq %r11, %rsi

} ___ .E1 c.
return 1; movq %rdi, %rax

} cqto
idivq %rsi
___ $0, %rdx d.
je .E2
addq ____, %rsi e.
jmp .L1

.E1:
movq ___, %rax f.
____ g.

.E2:
____ $0, %rax h.
____ i.

j. What does this function do?

1

Problem 2

Consider the table below, which shows the initial contents of some registers and memory locations:

Initial Values
Registers Values Memory Values
rax 16 0x3FF0 10
rdx 32 0x3FF8 100
rcx 2 0x4000 210
rbx 0x3FF8 0x4008 24

a. Fill in Table 1 showing the results if the following machine code is run from the initial state (these
instructions do not change the memory):

movq $1, %rax
subq $24, %rdx
addq %rcx, %rax
shlq $3, %rdx

Table 1
Registers Values Memory Values
rax 0x3FF0 10
rdx 0x3FF8 100
rcx 0x4000 210
rbx 0x4008 24

b. Fill in Table 2 showing the results if instead the following machine code is run from the initial state at the
top:

leaq (%rbx, %rcx, 4), %rax
movq %rdx, 8(%rax)
subq $8, %rbx
subq $10, (%rbx)
subq $16, %rax

Table 2
Registers Values Memory Values
rax 0x3FF0
rdx 0x3FF8
rcx 0x4000
rbx 0x4008

2

Problem 3

This is the assembly associated with the function long function_A(long n):

function_A:
movq $-1, %rax
movq $0, %rcx
movq $3, %r10
cmpq %rcx, %rdi
jl .L5
movq $1, %rax
movq $1, %rdx
jmp .L3

.L4:
imulq %r10, %rax
addq $1, %rdx

.L3:
cmpq %rdi, %rdx
jle .L4

.L5:
ret

A. Write C code that corresponds to the assembly given above. Give the variables meaningful names, not the
names of registers, including giving a more informative name for the parameter currently named n.

B. Explain in a sentence or two what this function does.

3

Problem 4

(Based on the textbook problem 2.87.)

We’ve defined a new floating point standard, called UMN-20, which follows the basic rules of IEEE floating
point, but contains 20 bits. This format has 1 sign bit, 6 exponent bits (k=6), and 13 fraction bits (n=13).
The exponent bias is 26−1 − 1 = 31.

A. Fill in the table that follows for each of the numbers given, with the following instructions for each column:

• Hex: the five hexadecimal digits describing the encoded form.
• M: the value of the significand. This should be a number of the form x or x/y where x is an integer

and y is an integral power of 2. Examples include 1, 67/64, and 3/2.
• E: the integer value of the exponent.
• V: the numeric value represented. Use the notation ±x or ±x × 2z , where x and z are integers.
• D: the (possibly approximate) decimal numeric value. Include at least 3 non-zero fraction digits.

You need not fill in entries marked –.

Example: to represent the number 3/4 we would have s=0, M=3/2, and E=-1. Our number would therefore
have an exponent field of 0111102 (decimal value of −1 + 31 = 30) and a significand field of 10000000000002,
giving a hex representation 3D000. The numeric value is 0.75.

Description Hex M E V D
3/4 3D000 3/2 -1 3 × 2−2 0.75
100
Largest value < -2
Smallest positive normalized value
Number with hex 12340 12340
NaN – – – –

B. Floating point numbers in general, and in this case specifically the UMN-20 format, support addition and
subtraction, but this operation is not necessarily associative. In real numbers, (231+231)−231 = 231+(231−231),
but suppose we did the same operations with UMN-20 floating point. Fill in the Value parts of the following
table with how those results would be represented in UMN-20, briefly describing how you get each result.

Computation Value Computation Value
L1 = 231 + 231 R1 = 231

L2 = 231 R2 = 231 − 231

L = L1 − L2 R = R1 + R2

Do L and R have the same value?

4

Problem 5

The assembly for the following function was produced with GCC.

pushq %rbp
movq %rsp, %rbp
subq $32, %rsp
movq %rdi, -24(%rbp)
movl $0, -8(%rbp)

.L6:
cmpl $25, -8(%rbp)
jg .L7
movl $26, -4(%rbp)

.L5:
cmpl $25, -4(%rbp)
jle .L4
call rand
movl %eax, -4(%rbp)
andl $31, -4(%rbp)
jmp .L5

.L4:
movq -24(%rbp), %rdx
movl -4(%rbp), %ecx
movl -8(%rbp), %eax
movl %ecx, %esi
movl %eax, %edi
call swap
addl $1, -8(%rbp)
jmp .L6

.L7:
nop
leave
ret

Fill in the blanks for the C code, which was compiled to obtain this function. Assume that the function rand
(part of the standard library) returns a random non-negative int. The function swap(x, y, arr) switches
the position of two entries at indexes x and y in the array arr. You may find it helpful to make a table
showing which stack locations are used to hold various local variables.

void create_shuffle(char *table){
for (int i = ___; i < ___; i++){

int j = ___;
while (j >= ___){

j = ___;
j = ___ & ___;

}
swap(___, ___, table);

}
}

5

	CSci Spring 2020 Section 010 Problem Set 2
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

