
CSCI 2021, Spring 2020
Malloc Lab: Writing a Dynamic Storage Allocator

Nothing is do. This is for practice only.

1 Introduction

In this lab you will be writing a dynamic storage allocator for C programs, i.e., your own version of the
malloc, free and realloc routines. You are encouraged to explore the design space creatively, with
the goal of implementing an allocator that is correct, space-efficient and fast.

2 Hand Out Instructions

Download the tar file from the class webpage on the assignments page. Start by copying the file named
ha4-handout.tar to a protected directory in which you plan to do your work. Then give the command:
tar xvf ha4-handout.tar. This will cause a number of files to be unpacked into the directory. The
only file you will be modifying and handing in is mm.c. The mdriver.c program is a driver program
that allows you to evaluate the correctness and space usage of your solution. Use the command make to
generate the driver code and run it with the command ./mdriver -V. (The -V flag displays helpful
summary information.) The mdriver program can also benchmark your implementation relative to the
one in the C library (try ./mdriver -v -l), but because these results will differ based on the machine
you use and other factors, we have developed a more precisely reproducible performance measurement ap-
proach based on simulation. If you run the script simulate-speed.pl (with Perl, using the command
perl simulate-speed.pl), it will count the precise number of simulated instructions your imple-
mentation requires, and use this for simulated runtime measurements.

Looking at the file mm.c you’ll notice a C structure team into which you should insert the requested
identifying your personal information. Do this right away so you don’t forget. Note that though this
structure is named team out of tradition, this is an individual assignment, so you should put in just your
own information as member 1 and leave the second spots empty.

When you have completed the lab, you will hand in only one file (mm.c), which contains your solution.

3 How to Work on the Lab

Your dynamic storage allocator will consist of the following four functions, which are declared in mm.h and
defined in mm.c.

int mm_init(void);

1



void *mm_malloc(size_t size);
void mm_free(void *ptr);
void *mm_realloc(void *ptr, size_t size);
int mm_check(int verbose);

The mm.c file we have given you implements the simplest but still functionally correct malloc packages
that we could think of. Using this as a starting place and begin by understanding how and why these
implementations work. Then start to modify the functions (and probably define other private static
functions), so that they obey the following semantics:

• mm init: Before calling mm malloc mm realloc or mm free, the application program (e.g.,
the trace-driven driver program that you will use to evaluate your implementation) calls mm init
to perform any necessary initializations, such as allocating the initial heap area. You should also
initialize any global variables you use, since the driver will run several sessions in the same program.
The return value should be -1 if there was a problem in performing the initialization, 0 otherwise.

• mm malloc: The mm malloc routine returns a pointer to an allocated block payload of at least
size bytes. The entire allocated block should lie within the heap region and should not overlap with
any other allocated chunk.

We will comparing your implementation to the version of malloc supplied in the standard C library
(libc). Since the libc malloc always returns payload pointers that are aligned to 16 bytes, your
malloc implementation should do likewise and always return 16-byte aligned pointers.

• mm free: The mm free routine frees the block pointed to by ptr. It returns nothing. This rou-
tine is only guaranteed to work when the passed pointer (ptr) was returned by an earlier call to
mm malloc or mm realloc and has not yet been freed.

• mm realloc: The mm realloc routine returns a pointer to an allocated region of at least size
bytes with the following constraints.

– if ptr is NULL, the call is equivalent to mm malloc(size);

– if size is equal to zero, the call is equivalent to mm free(ptr);

– if ptr is not NULL, it must have been returned by an earlier call to mm malloc or mm realloc.
The call to mm realloc changes the size of the memory block pointed to by ptr (the old
block) to size bytes and returns the address of the new block. Notice that the address of the
new block might be the same as the old block, or it might be different, depending on your imple-
mentation, the amount of internal fragmentation in the old block, and the size of the realloc
request.
The contents of the new block are the same as those of the old ptr block, up to the minimum of
the old and new sizes. Everything else is uninitialized. For example, if the old block is 16 bytes
and the new block is 24 bytes, then the first 16 bytes of the new block are identical to the first
16 bytes of the old block and the last 8 bytes are uninitialized. Similarly, if the old block is 16
bytes and the new block is 8 bytes, then the contents of the new block are identical to the first 8
bytes of the old block.

These semantics match the the semantics of the corresponding libc malloc, realloc, and free rou-
tines. Type man malloc to the shell for documentation of these.

2



4 Challenges

You may wish to use the implicit free-list allocator described in section 9.9 of the textbook as a start-
ing point for implementing your own allocator. If you want to take this approach, we’ve included a file
mm-implict.c with code from the textbook in the assignment. If you are going to extend this code,
be sure that you understand in detail how it works before you start modifying it: for instance, try thinking
through how the find_fit and place functions should be implemented before looking at the textbook’s
implementation.

The implementation provided in mm-implict.c works correctly, and it is not as space-inefficient as the
simplistic implementation given in mm.c, but if you evaluate it using the driver program, you will see that
its space utilization is not very good, and its average throughput is awful. The most important way you
will need to fix it is to improve its throughput, i.e. make each operation complete more quickly. The initial
implementation takes a long time to find a free block when the heap is large, because it has to walk through
the whole heap in sequence. The implementation of realloc is also very inefficient if a memory block is
repeatedly increased in size by a small amount, because the whole block has to be copied every time. Thus
your highest implementation priorities should be designing a better data structure that allows free blocks
to be found more quickly, and changing the implementation of realloc so that it less often has to copy
the entire block. The space utilization inefficiency occurs because the initial implementation uses a first-fit
allocation policy, which makes poor use of free space leading to external fragmentation. To improve this,
you should think about ways to choose more appropriate free blocks to satisfy requests; however you will
see that there is a trade-off between space utilization and throughput.

5 Heap Consistency Checker

Dynamic memory allocators are notoriously tricky beasts to program correctly and efficiently. They are
difficult to program correctly because they involve a lot of untyped pointer manipulation. You will find it
very helpful to write a heap checker that scans the heap and checks it for consistency.

Some examples of what a heap checker might check are:

• Is every block in the free list marked as free?

• Are there any contiguous free blocks that somehow escaped coalescing?

• Is every free block actually in the free list?

• Do the pointers in the free list point to valid free blocks?

• Do any allocated blocks overlap?

• Do the pointers in a heap block point to valid heap addresses?

Your heap checker will consist of a function int mm check(int verbose) in mm.c. It will check
any invariants or consistency conditions you consider prudent. It returns a nonzero value if and only if your
heap is consistent. You are not limited to the listed suggestions nor are you required to check all of them.
You are encouraged to print out error messages when mm check fails. You will probably also find it useful
for mm_check to be able to print the data structures of your heap even when they are not inconsistent, since
this will help you see what’s going on during debugging. We recommend that your implementation can do
this when the verbose argument is non-zero.

3



This consistency checker is for your own debugging during development. (It would also be helpful if you
ask the course staff for debugging help during the assignment: if you don’t have a check routine, our first
suggestion will usually be that your write one.) When you submit mm.c, make sure to remove or comment-
out any calls to mm check as they will slow down your throughput. Style points will be given for your
mm check function. Make sure to put in comments and document what you are checking.

6 Support Routines

The memlib.c package simulates the memory system for your dynamic memory allocator. You can invoke
the following functions in memlib.c:

• void *mem sbrk(int incr): Expands the heap by incr bytes, where incr is a positive non-
zero integer and returns a generic pointer to the first byte of the newly allocated heap area. The
semantics are identical to the Unix sbrk function, except that mem sbrk accepts only a positive
non-zero integer argument.

• void *mem heap lo(void): Returns a generic pointer to the first byte in the heap.

• void *mem heap hi(void): Returns a generic pointer to the last byte in the heap.

• size t mem heapsize(void): Returns the current size of the heap in bytes.

• size t mem pagesize(void): Returns the system’s page size in bytes (4K on Linux systems).

7 The Trace-driven Driver Programs

The driver program mdriver.c in the malloclab-handout.tar distribution tests your mm.c pack-
age for correctness, space utilization, and throughput. The driver program is controlled by a set of trace files
that are included in the malloclab-handout.tar distribution and/or on the CSE Labs machines. Each
trace file contains a sequence of allocate, reallocate, and free directions that instruct the driver to call your
mm malloc, mm realloc, and mm free routines in some sequence. The driver and the trace files are
the same ones we will use when we grade your submitted mm.c file for space utilization and throughput.

The driver mdriver.c accepts the following command line arguments:

• -t <tracedir>: Look for the default trace files in directory tracedir instead of the default
directory defined in config.h.

• -f <tracefile>: Use one particular tracefile for testing instead of the default set of trace-
files.

• -h: Print a summary of the command line arguments.

• -l: Run and measure libc malloc in addition to the student’s malloc package.

• -v: Verbose output. Print a performance breakdown for each tracefile in a compact table.

• -V: Use instead of -v for even more verbose output. Prints additional diagnostic information as
each trace file is processed. Useful during debugging for determining which trace file is causing your
malloc package to fail.

4



The throughput of your malloc implementation will be measured relative to the performance of the system
C library (“libc”) allocator from Ubuntu 18.04 as found on the 1-250 Keller lab machines. You can
compare the runtime of your implementation to the C library one by running mdriver with the -v and -l
options: the total shown in the Kops column is a summary of the average throughput in units of thousands
of operations per second. On the lab machines when no one else is using them, we have measured the system
C library as running at about 20,965 Kops/sec.

However, because various factors make it somewhat unreliable to measure performance using real time, the
official throughput of your solution as used for grading will be based on a simulation whose results are more
reproducible. This simulation is based on the Valgrind Callgrind tool, and implemented in a Perl script
named simulate-speed.pl. The script will run the C library implementation and your implementation
using mdriver similarly as when you run mdriver directly, except that it will do so using a simulated
CPU on which we can count exactly the number of instructions executed. The script then converts these
instruction counts into simulated times and throughput measurements using the simplifying assumption that
one instruction is executed each clock cycle on a machine with a 3.6 GHz clock frequency (which happens
to be that of the 1-250 lab machines, though on the real CPU some instructions require several cycles and
other times several instructions can execute at once). Note that simulate-speed.pl does not check
for as many errors as mdriver does, and it can also be a bit slower, so you should run it only after your
implementation passes mdriver and has reasonable performance.

On the lab machines, we measured the C library implementation as taking 14,376,377 instructions to run the
grading traces, and your implementation will be graded based on how its simulated running time compares
to this. The simulator works at the binary code level, so it doesn’t mask differences in the C compiler or the
system C library. So for the most accurate results you should test using the supplied Makefile on CSE Labs
machines running Ubuntu 18.04 such as the lab and Vole machines, which use GCC version 7.3.0 with -O2
and version 2.27 of the GNU C library. (You may want to temporarily reduce the optimization level during
debugging, but if you do, make sure you reset it to -O2 and retest before submitting.)

8 Programming Rules

• You should not change any of the interfaces in mm.c.

• You should not invoke any memory-management related library calls or system calls. This excludes
the use of malloc, calloc, free, realloc, sbrk, brk or any variants of these calls in your
code.

• You are not allowed to define any global or static compound data structures such as arrays, structs,
trees, or lists in your mm.c program. However, you are allowed to declare global scalar variables
such as integers, floats, and pointers in mm.c. If you want to use compound data structures in your
implementation, you need to allocate them on the heap, but you can have global pointers to them.

• For consistency with the libc malloc package, which returns blocks aligned on 16-byte bound-
aries, your allocator must always return pointers that are aligned to 16-byte boundaries. The driver
will check this requirement for you.

5



9 Evaluation

We will be using automated scripts as part of grading this assignment, so it is important that you check
carefully that your implementation runs correctly. If your code doesn’t compile or has bugs that cause the
driver program to crash on any of the evaluation traces, we will not be able to give you much credit at all.

You should design and implement your malloc library so that it provides the correct behavior for any legal
sequence of operations. It is especially important that your implementation run correctly on the grading
traces, but we will also test it using some other legal traces which we have not provided to you, so you may
wish to perform additional testing of your own as well. If your implementation fails a correctness check on
any of the grading traces, your space utilization and throughput scores will be proportionally reduced as if
the performance on that trace had been very poor.

Though your implementation must behave correctly on any traces, you are allowed to design it so that it
performs particularly well on the traces used for grading. You will probably want to look at the traces on
which your implementation performs least well, try to understand what the traces are doing, and devise
general-purpose or specific improvements to your implementation.

• Space utilization (40 points). The space utilization is the peak ratio between the aggregate amount
of memory used by the driver (i.e., allocated via mm malloc or mm realloc but not yet freed via
mm free) and the size of the heap used by your allocator (requested by mem_sbrk). The optimal
ratio equals to 1. You should find good policies to minimize fragmentation in order to make this ratio
as close as possible to the optimal. The number of points you receive will be proportional you your
utilization ratio: for instance if your space utilization is 75%, you will receive 30 out of 40 points.

• Throughput (40 points). Throughput is the average number of operations completed per second. For
grading purposes we will measure this using the simulate-speed.pl simulator. You will receive
the full 40 points if your implementation is at least as fast as the C library implementation, which in
simulation is 19,124 Kops/sec. If your implementation is slower, you will receive points proportional
to your throughput: for instance if your implementation achieve 10,000 Kops/sec in simulation on the
grading traces, your throughput score will be 21.

• Correctness on held-back tests (5 points). In addition to incorrect behavior on the main evaluation
traces reducing your scores for space utilization and throughput, an additional 5 points will be as-
signed based on the correctness of your implementation on other test traces that we will not release
beforehand.

• Style (15 points).

– Your code should be decomposed into meaningful functions and avoid using too many global
variables.

– Your code should begin with a header comment that describes the structure of your free and
allocated blocks, the organization of the free list, and how your allocator manipulates the free
list.

– Each subroutine should have a header comment that describes what it does and at a high level
how it does it.

– Your heap consistency checker mm check should be thorough and well-documented.

Among the 15 style points, 5 points will be based on a good heap consistency checker and related
debugging support, and the remaining 10 points will cover all other aspects of style including good

6



program structure and comments. We also reserve the right to deduct style points for any violation of
a rule described in this writeup, even if minor: following the rules carefully is important in allowing
our grading process to be efficient in a large class like this.

Both memory and CPU cycles are expensive system resources, which is why both space utilization and
throughput are important to your final score. Since each metric contributes 40% of your score, you should
not go to extremes to optimize either the memory utilization or the throughput only. To receive a good
score, you must achieve a balance between utilization and throughput. It is possible to build an allocator
that is much faster than the C library, at the expense of space utilization, but such an implementation would
not achieve a high score. It is possible to achieve space utilization of 98% or more, though doing so while
maintaining high throughput is not easy. It is possible to get a combined performance score over 70 without
using any esoteric techniques, and we know that a score of 78 is possible (including as 38+40 or 39+39).

10 Hand-in Instructions

You will submit your solution on Moodle just like HA1 and HA2.

Name your file mm 〈X500〉.c where 〈X500〉 is your X500 user name. Before submitting,
ensure that your program compiles and runs with mdriver and simulate-speed.pl on
the CSE Labs machines.

11 Individual Assignment

This is an individual assignment, and everything you submit must be your own work. Except for code in
mm.c and mm-implicit.c that we have provided, all the code in your solution must have been written
by you. Do not copy code from other students in the class, students who have taken the class or similar
classes in the past, or other sources on the Internet. We have tried to make this assignment self-contained, in
that the code and ideas you need to complete it have been introduced in lecture and the textbook. It should
not be necessary, but it is allowed, to refer to public external sources such as books and websites for ideas
when working on the assignment. However you must cite any external sources that provided ideas you used
in your solution, and it is never acceptable to copy code from external sources for this assignment. If part of
your design is reused from mm.c and/or mm-implicit.c, you should give credit and distinguish which
parts are reused and which parts are new in the comments describing your implementation.

12 Hints

• Use the mdriver -f option for small tests. During initial development, using tiny trace files will
simplify debugging and testing. We have included two such trace files (short{1,2}-bal.rep)
that you can use for initial debugging, and you can also make your own. Printing out your data
structures at each step can help you check whether your code is doing what you expect it to.

• Use the mdriver -v and -V options. The -v option will give you a detailed summary for each trace
file. The -V will also indicate when each trace file is read, which will help you isolate errors.

• Compile with gcc -g and use a debugger. A debugger will help you isolate the cause when your
code crashes.

7



• Insert calls to mm_check during debugging. Once your data structures have become corrupted, it
can be difficult to understand what it happening. If you implement a comprehensive check routine
and insert calls after each step, you can find out immediately if an operation has gone wrong.

• Understand every line of the malloc implementation in mm-implicit.c (also in the textbook
section 9.9). The textbook has a detailed example of a simple allocator based on an implicit free list.
Use this is a point of departure. Don’t start working on your allocator until you understand everything
about the simple implicit list allocator.

• Encapsulate your pointer arithmetic in C preprocessor macros and/or structures. Pointer arithmetic
in memory managers is confusing and error-prone because of all the casting that is necessary. You
can reduce the complexity significantly by writing macros for your pointer operations. See the text
for examples. Or if you are storing several pieces of information in a memory region, you can define
a struct to represent the layout and cast pointers to this pointer-to-structure type.

• Do your implementation in stages. Debugging is more difficult if you have a lot of untested code you
are trying to work with at once. You should try to split your implementation into smaller steps, where
after each step you can test that it is working correctly before adding more complexity. One example
of this is that you should probably do your optimizations of realloc either before or after other
changes that affect malloc and free.

• Start early! It is possible to write an efficient malloc package with a few pages of code. However, we
can guarantee that it will be some of the most difficult and sophisticated code you have written so far
in your CS career. So start early, and good luck!

8


