
Computer Science 2021 Section 010
Fall 2018
Midterm Exam 2
November 16th, 2018
Time Limit: 50 minutes, 3:35pm-4:25pm

• This exam contains 8 pages (including this cover page) and 4 questions. Once we tell you to start,
please check that no pages are missing.

• Before starting the exam, you can fill out your name and other information of this page, but don’t
open the exam until you are directed to start. Don’t put any of your answers on this page.

• You may use any textbooks, notes, or printouts you wish during the exam, but you may not use any
electronic devices: no calculators, smart phones, laptops, etc.

• You may ask clarifying questions of the instructor or TAs, but no communication with other students
is allowed during the exam.

• Please read all questions carefully before answering them. Remember that we can only grade what
you write on the exam, so it’s in your interest to show your work and explain your thinking.

• Students often find that the questions vary in difficulty. Your best strategy is usually to skim over all
the questions, and then start working on the ones that look easiest. We also suggest that you leave
time at the end to attempt every question, since we can’t give you any partial credit if you leave a
question blank.

• By signing below you certify that you agree to follow the rules of the exam, not to share exam material
with other students before their exams, and that the answers on this exam are your own work only.

The exam will end promptly at 4:25pm. Good luck!

Your name (print):

Your UMN email/X.500: @umn.edu

Sign and date:

Question Points Score

1 24

2 31

3 25

4 20

Total: 100

Computer Science 2021 Section 010 Midterm Exam 2 - Page 2 of 8 November 16th, 2018

1. (24 points) Unexpected instructions.

In the left column are 12 x86-64 instructions. In the right column are 12 C statements containing
long variables named after registers. Match each instruction with the C code that describes its effect,
assuming that each variable is held in the register with the same name. But don’t expect to be able to
tell just by comparing instruction names with the C operators.

Each choice on the right should be used the same number of times it appears: i.e., choices A, G, and I
are used twice each, and the others once each.

(a) lea (%rax, %rax, 8), %rdx

(b) and $0, %rdx

(c) lea 0(%rdx), %rdx

(d) lea (%rax, %rdx), %rdx

(e) mov %rdx, %rdx

(f) sar $63, %rdx

(g) shl $2, %rdx

(h) add %rdx, %rdx

(i) lea (,%rdx, 4), %rdx

(j) xor %rdx, %rdx

(k) lea -1(%rax, %rax), %rdx

(l) lea (%rax, %rax, 2), %rdx

A. rdx = 0

A. rdx = 0

B. rdx += rax

C. rdx = 2*rax - 1

D. rdx = 3*rax

E. rdx = 9*rax

F. rdx = rdx << 1

G. rdx = 4*rdx

G. rdx = 4*rdx

H. rdx = rdx < 0 ? -1 : 0

I. /* does nothing */

I. /* does nothing */

Page 2

Computer Science 2021 Section 010 Midterm Exam 2 - Page 3 of 8 November 16th, 2018

2. (31 points) Machine code and arrays.

Below is the assembly code for a function named check. On the next page, along with another copy
of the assembly, is the outline of C code for the function, with many parts left blank. Fill in the blanks
in the C code to create a function that does the same thing as the assembly code, in other words what
might have been the source code compiled to create this assembly code. Use the macro SIZE in code
related to the size of the arrays, so that the source code could also be used if the array size changed.

Note that in several places the structure of the assembly code does not directly match the source code:
for instance the source code has one parameter and four local variables, whereas the assembly code uses
a different number of registers. There are multiple possible correct answers, based on different ways of
writing the same functionality.

check:
pushq %rbx
movl $100, %edx
movq %rdi, %rbx
xorl %esi, %esi
movq $flags, %rdi
call memset
xorl %eax, %eax

.L4:
movq (%rbx,%rax,8), %rdx
cmpq $99, %rdx
jbe .L2

.L6:
xorl %eax, %eax
jmp .L3

.L2:
incq %rax
movb $1, flags(%rdx)
cmpq $100, %rax
jne .L4
movl $100, %edx
xorl %eax, %eax

.L5:
orb $0x80, flags(%rax)
decq %rdx
movq (%rbx,%rax,8), %rax
jnz .L5
xorl %eax, %eax

.L7:
cmpb $0x81, flags(%rax)
jne .L6
incq %rax
cmpq $100, %rax
jne .L7
movl $1, %eax

.L3:
popq %rbx
ret

This code does something meaningful, but you don’t need
to understand the meaning to complete the question.
The memset function is declared as:
void *memset(void *s, int c, size_t n);
It fills in an n-byte memory area pointed to by s with the
byte value c, and returns the pointer s.
The instruction incq adds 1 to its operand, while the in-
struction decq subtracts 1. Both instructions set the condi-
tion code flags based on the result.

Page 3

Computer Science 2021 Section 010 Midterm Exam 2 - Page 4 of 8 November 16th, 2018

check:
pushq %rbx
movl $100, %edx
movq %rdi, %rbx
xorl %esi, %esi
movq $flags, %rdi
call memset
xorl %eax, %eax

.L4:
movq (%rbx,%rax,8), %rdx
cmpq $99, %rdx
jbe .L2

.L6:
xorl %eax, %eax
jmp .L3

.L2:
incq %rax
movb $1, flags(%rdx)
cmpq $100, %rax
jne .L4
movl $100, %edx
xorl %eax, %eax

.L5:
orb $0x80, flags(%rax)
decq %rdx
movq (%rbx,%rax,8), %rax
jnz .L5
xorl %eax, %eax

.L7:
cmpb $0x81, flags(%rax)
jne .L6
incq %rax
cmpq $100, %rax
jne .L7
movl $1, %eax

.L3:
popq %rbx
ret

#define SIZE 100
unsigned char flags[SIZE];
long check(long a[SIZE]) {

long i1, i2, i3, j;

memset(______, _______, ______);

for (i1 = 0; _____ SIZE; i1++) {

if (_____ < 0 || ____________)
return 0;

____________ = 1;
}
j = 0;

for (_______; ________; _______) {

___________________;

j = _______;
}

for (i3 = 0; _______; ________) {

if (__________________)

return ______;
}

return ______;
}

Page 4

Computer Science 2021 Section 010 Midterm Exam 2 - Page 5 of 8 November 16th, 2018

3. (25 points) Stack layout.

For this question, consider the following C code, with some of the corresponding assembly code to the
right:

long f1(long x) {
long l1 = 1;
long l2 = 2;
long l3 = x;
return l1 + l2 + l3;

}

void f2(long x) {
char local[8];
if (x & 1) {

local[0] = 0;
}
printf("You won ");
if (local[0])

printf("%.8s\n", local);
else

printf("nothing.\n");
}

int main(void) {
long input;
/* ... */
f1(input);
f2(input);
/* ... */

}

f1:
subq $0x28, %rsp
movq %rdi, 0x10(%rsp)
movq $1, 0x20(%rsp)
movq $2, 0x18(%rsp)
movq 0x10(%rsp), %rax

here (a)
addq $3, %rax
addq $0x28, %rsp
ret

f2:
subq $0x28, %rsp
movq %rdi, %rax
andl $1, %eax
testq %rax, %rax
je .L4
movb $0, 0x10(%rsp)

here (b)
.L4: # ...
ret

main:
... input in %rbx
here %rsp is 0x7fffffff0030
mov %rbx, %rdi
call f1
mov %rbx, %rdi
call f2

Comments containing ... indicate places where we have left out code to simplify what you have to
look at.

Assume that before the call to f1, the value of the stack pointer %rsp is 0x7fffffff0030. The
questions on the next page will ask you about the contents of the stack during the execution of f1 and
f2. For those questions:

• Fill in a box with an exact numeric value if you know it, in either decimal or hexadecimal with
0x.

• If you know some but not all digits of a number, you can write question marks in place of the
unknown digits.

• Write “Return address for function” for the return address of a call to a function function.

• If there is no way to know the contents of a location from the information we have provided, write
“unknown” or leave the box blank.

The printf format specifier %.8s is like a regular “%s”, except that it will never print more than 8
characters of the string.

Page 5

Computer Science 2021 Section 010 Midterm Exam 2 - Page 6 of 8 November 16th, 2018

(a) Suppose that the value of the variable input is 7. Fill in the blanks in the following table to show
the contents for the stack at the point labeled “here (a)” inside f1:

Address Contents

0x7fffffff0030 Return address for main

0x7fffffff0028

0x7fffffff0020

0x7fffffff0018

0x7fffffff0010

0x7fffffff0008

0x7fffffff0000

(b) Still for a run with input equal to 7, fill in the following table to show the contents of the stack at
the point labeled “here (b)” inside f2:

Address Contents

0x7fffffff0030 Return address for main

0x7fffffff0028

0x7fffffff0020

0x7fffffff0018

0x7fffffff0010

0x7fffffff0008

0x7fffffff0000

(c) Suppose that you wanted the program to print the message:
You won $9999999

What value would input need to have to make that happen? (Hint: the final page of the exam has
an ASCII table.) Write the 64-bit integer value in hexadecimal:

Page 6

Computer Science 2021 Section 010 Midterm Exam 2 - Page 7 of 8 November 16th, 2018

4. (20 points) Structure shuffling.

Each of the parts of this question gives you the names and types of the fields of a C struct. Choose an
order for the fields, so that layout of the structure on x86-64 has the requested property. Give the order
by listing the names of the fields in your order; we have shown one answer as an example. Optionally
(e.g., for partial credit), we have also left space where you could draw the structure layout.

Example fields: short s; char c; float f;
Example property: fields are in order of increasing size
Order: c, s, f

(a) Fields: short s; int i; char c; double d; unsigned char uc;
Property: structure requires no padding

Order:

(b) Fields: char a, b, c; int i, j, k;
Property: total size (including padding) is 24 bytes

Order:

(c) Fields: float *fp; short s; float f; int i; unsigned short us;
Property: s starts at offset 10

Order:

(d) Fields: short s; char c; float f; double d; int *ip
Property: every field offset divisible by 8

Order:

Page 7

Computer Science 2021 Section 010 Midterm Exam 2 - Page 8 of 8 November 16th, 2018

This extra page has some tables of information for your reference.
x86-64 assembly language (AT&T format):

Addressing modes
(R) mem[reg[R]]
D(R) mem[D + reg[R]]
D(B,I,S) mem[D + reg[B] + reg[I] * S]

omitted D, B, or I treated as 0
omitted S treated as 1

Size suffixes
b 8-bit byte
w 16-bit value
l 32-bit value
q 64-bit value

Calling conventions
Argument registers %rdi, %rsi, %rdx, %rcx, %r8, %r9
Return value %rax

Sizes of basic C types on x86-64:

Type Size (bytes) Alignment
char 1 1
short 2 2
int 4 4

long 8 8
float 4 4

double 8 8
pointer 8 8

ASCII/hex table:

0 NUL 10 DLE 20 30 0 40 @ 50 P 60 ‘ 70 p
1 SOH 11 DC1 21 ! 31 1 41 A 51 Q 61 a 71 q
2 STX 12 DC2 22 " 32 2 42 B 52 R 62 b 72 r
3 ETX 13 DC3 23 # 33 3 43 C 53 S 63 c 73 s
4 EOT 14 DC4 24 $ 34 4 44 D 54 T 64 d 74 t
5 ENQ 15 NAK 25 % 35 5 45 E 55 U 65 e 75 u
6 ACK 16 SYN 26 & 36 6 46 F 56 V 66 f 76 v
7 BEL 17 ETB 27 ’ 37 7 47 G 57 W 67 g 77 w
8 BS 18 CAN 28 (38 8 48 H 58 X 68 h 78 x
9 HT 19 EM 29) 39 9 49 I 59 Y 69 i 79 y
A LF 1A SUB 2A * 3A : 4A J 5A Z 6A j 7A z
B VT 1B ESC 2B + 3B ; 4B K 5B [6B k 7B {
C FF 1C FS 2C , 3C < 4C L 5C \ 6C l 7C |
D CR 1D GS 2D - 3D = 4D M 5D] 6D m 7D }
E SO 1E RS 2E . 3E > 4E N 5E ˆ 6E n 7E ˜
F SI 1F US 2F / 3F ? 4F O 5F _ 6F o 7F DEL

Page 8

