
Friend functions
Ch 11.2

Highlights

- friends

Review: private

Notice this line:

Which runs...

This means putin is accessing barak's privates!

Private only means things NOT associated
with the class (such as main) cannot use
or access these variables/functions

putin's feet barak's feet

Operator overloading

In operator overloading, the left variable
“calls” the operator function on the right one

... is the same as

Since the “operator+” function is inside the
“Point” class, it can access all the private
variables/functions
(see: pointReview.cpp)

function!

friend functions

You can give a non-class function access to
private variables by making it a friend

A friend function is not inside the class, but
does have access to its private variables
(friends don't mind sharing)

This allows you to give exceptions to the
private rule for specific functions

friend functions

Instead of declaring a friend function at the
top, do it inside the class:

The function description/implementation is
identical to as if it was a non-friend:

(See: pointFriends.cpp)

friend functions

How would you overload the << operator?
Would you use a friend?

What do you return?

Hint: cout is type “ostream”
Hint2: use call-by-reference

(See: pointFriendsOverload.cpp)

friend functions

How would you overload the << operator?
Would you use a friend?

Yes, so you can put cout first
What do you return?

ostream& so you can cout multiple things

How would cin work?
Any other case of when you can think you
would need a friend with the point class?

friend functions

When would you want to use friend functions?

1. Typically when we want to involve two
separate classes

(see: multiplePrivates.cpp)

2. When we care about the order of things...
(as normal overloading needs your class to
come first)

	Slide 1
	Slide 2
	Slide 4
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

