
Operator Overload
Ch 11.1

Highlights

- operator overload

Basic point class

Suppose we wanted to make a simple class
to represent an (x,y) coordinate point

(See: pointClass.cpp)

Basic point class

Now let's extend the class and make a function
that can add two (x,y) coordinates together
(like vectors)

With two ints?

With another point?

(See: pointClassAdd.cpp)

Operator overloading

We can overload the + operator to allow easy
addition of points

This is nothing more than a “fancy” function

(See: pointOverload.cpp)

Operator overloading

When overload operators in this fashion,
the computer will convert a statement such as:

... into ...

... where the left side of the operator is the
“calling” class and the right side is a argument

function!

Operator overloading

You cannot change the number of parts to an
operator ('+' only gets 2, '!' only gets 1)

Cannot create “new” operators
(can only overload existing ones)

Cannot change order of precedence
('*' is always before '+')

Operator '=' is special... save for later

Terrible units

Let's make a class that stores people's heights
using the terrible imperial units!

(see: heights.cpp)

Terrible units

Write the following operators to compare
two different heights:

<
==
>

(see: heightsCompare.cpp)

Operator overloading

Long list of operators you can overload:

() // this is normal overloading
+, -, *, /, %
!, <, >, ==, !=, <=, >=, ||, &&
// should be able to do anything above here
<<, >>, []
=, +=, -=, *=, /=, %=, ++ (before/after), --(b/a)
^, &, |, ~, (comma), ->*, ->
^=, &=, |=, <<=, >>=

Operator overloading

Functions define a general procedure (or code
block) to run on some inputs

Constructors are nothing but “special”
functions that initialize class variables

Operator overloading is a special function
that is disguised as a symbol

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

