
Classes
Ch 10.1 - 10.3

class vs array

Arrays group together
similar data types
(any amount you want)

Classes (and structs)
group together
dissimilar types that are
logically similar

class

A class is a new type that you create
(much like int, double, ...)

Blueprint
for all objectsAn instance of

date class

Another instance

class

While classes are similar to arrays as they
hold multiple things, the way you access them
is different

In arrays you use “[]” and numbers (indexes),
while in classes you use “.” and names

public vs private

public vs private

public vs private

Creating interfaces with public allows users
to not worry
about the private
implementation

So... more work
for you
(programmer)
less work for
everyone else

public vs private

The public keyword allows anyone
anywhere to access the variable/method

The private keyword only allows access
by/in the class where the variable/method
is defined
(i.e. only variables of this type can access
this within itself)

public vs private

All variables should be private

While this means you need methods to set
variables, users do not need to know how
the class works

This allows an easier interface for the user
(also easier to modify/update code)

(See: dateClass.cpp)

public vs private

The idea is: if the stuff underneath changes,
it will not effect how you use it

For example, you change from a normal
engine to a hybrid engine... but you still
fill it up the same way

public vs private

An important point: private just means only
“date” things can modify the private variables
of a “date” object

However, two different “date” objects can
access each other's privates

(see: privateDates.cpp)

Constructors

The date class has two functions: setDate()
and print()

As we need to run setDate() on a variable
before it is useful anyways

In fact, such a thing exists and is called
a constructor (run every time you create
a variable)

Constructors

The class name and the constructor must
be identical
(constructors also have no return type)

(See: dateConstructor.cpp)

Constructors

If you don't put a constructor, C++ will make
a default constructor for you (no arguments)

To use the default constructor say this:
 or ...
... not this:

default constructor

Constructors

If you declared constructors you must use
one of those

Only if you declare no constructors, does
C++ make one for you (the default)

Note: our dateConstructor.cpp has no way
to change the value of the date after
it is created
(thus gives control over how to use class)

TL;DR Constructors

Constructors are functions, but with a few
special properties:

(1) They have no return type
(2) They must have the same name as the

class they are constructing
(3) If you want to make an instance of a class

you MUST run a constructor
(and if you ever run a constructor, you
are making an object)

#include

Just as writing very long main() functions
can start to get confusing...

... writing very long .cpp files can also get
confusing

Classes are a good way to split up code
among different files

#include

You can #include your class back in at the top
or link to it at compile time

You have to be careful as #include basically
copies/pastes text for you

Will not compile if class declared twice
(used in two different classes you #include)

#include

date.cpp date.hpp runDate.cpp
#include #include

Then compile with: g++ runDate.cpp date.cpp

#include

To get around this, you can use compiler
commands in your file

This ensures you only
have declarations once
(See: dateClass.hpp,
dateClass.cpp,
runDate.cpp)

“if not defined”
“define”

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	public priavte
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	constructor
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

