
Review
Ch 1-5

Executing code

Compile code
(convert from C++ to computer code)

- Syntax errors will prevent compilation

Run code
- Runtime errors will crash your program
- Logic errors will make your program

give the wrong output

Syntax =
car won't start

Runtime =
car accident

Logic =
bad directions

Identifiers

The identifier is the name of a variable/method
- Case sensitive
- Must use only letters, numbers or _
- Cannot start with a number
- (Some reserved identifiers)

Examples (second word):
int x, String s_o_s, double high2low

Primitive Types

bool - True or false
char - (character) A letter or number
int - (integer) Whole numbers
long - (long integers) Larger whole numbers
float - Decimal numbers
double - Larger decimal numbers

doubles are approximations
ints are exact but have a more limited range

cin

cin >> x;
By default, this will read the based off the
type of x, until it finds a space or character
not the same type as x

getline(cin, x);
x needs to be a string, but then stores
everything up until you hit enter

Note: mixing getline and “cin >>” ends poorly

Operations

Order of precedence (higher operations first):
-, +, ++, -- and ! (unary operators)
*, / and % (binary operators)
+ and - (binary operators)

Operators that change variables:
++, --, +=, -=, *=, /=, =

Note: integer division happens if you divide
two ints: int / int = int

If statements

if (boolean expression) {
// code

}
else {

// more code
}

|| is the OR operations
&& is the AND operations

Logical operations:
> (greater than)
== (equals)
< (less than)
>= (greater than

or equal to)
!= (not equal to)
<= (less than

or equal to)

Short-circuit evaluation

Simple cases of short-circuit:
When you have a bunch of ORs

if(expression || exp || exp || exp)
Once it finds any true expression,
if statement will be true

When you have a bunch of ANDs
if(expression && exp && exp && exp)

Once it finds any false expression,
if statement will be false

Scope

Variables only exist in the most recently
started block:

If you want variables to exist longer, you need
to declare them further up in the program

z lives in most recent block

z goes away at corresponding
closing block

Loops

3 parts to any (good) loop:
- Loop variable initialized
- boolean expression with loop variable
- Loop variable updated inside loop

for loops have these 3 parts in the same place
while loops have these spread out
do while loops are while loops that always

execute at least once

Looping control commands

continue restarts
loop immediately

break stops loop

Functions

Function declaration
(put before main or any
other definition)

Function definition

Functions

The return statement value must be the same
as the return type (or convertible)

return type

function header
(whole line)

body
return statement

parameters (order matters!)

Functions

The “default” way when passing in variables
to functions is to copy the value

This makes a local
variable in the function

The “call-by-reference”
way actually passes the
variable into the function
(i.e. memory address)

	Slide 1
	errors
	Slide 3
	identifiers
	primitive type
	Slide 6
	op order
	if
	Slide 9
	Slide 10
	loop
	Slide 12
	Slide 13
	Slide 14
	Slide 15

