
2D Arrays
Ch 7



Highlights

- arrays in functions

- 2D arrays



Arrays

Remember, arrays are memory addresses,
much like call-by-reference: void f(int &x)

Thus we have to deal with two categories of
variables:
Variables for values Variables for addresses
int call-by-reference
char arrays
string
...



Array - array passing

(See: reverse.cpp)

But wait! This means the function can change
the data since we share the memory address



Array - array passing

(See: reverseFail.cpp)

If we want to prevent a function from
modifying an array, we can use const
in the function header:

This also means any function called inside
reverse must also use const on this array



Array - returning arrays

However, we do not know how to return
arrays from functions (yet)

For now, you will have to pass in an array
to be changed, much like call-by-reference

syntax error



Sort

Let's practice arrays by sorting!

(See: sort.cpp)



Sort

Let's practice arrays by sorting!
Plan of attack:

1. Make a new array
2. Find minimum element in original

array and copy into new array
3. Replace minimum element in original

array with the maximum element
4. Repeat 2 to 3 until done

(See: sort.cpp)



Multidimensional Arrays

So far we have dealt with simple (one
dimensional) arrays

We have represented this as all the data
being stored in a line

(See: lineWorld.cpp)



Multidimensional Arrays

foo's length = 3
(number of rows)

foo[0]'s length=5
(number of 
columns
in row 0)



Multidimensional Arrays

If we think of a couple simple (one 
dimensional) arrays on top of each other...

(See: gridWorld.cpp)

One array for
numbers 1-10

One array for
numbers 71-80



Multidimensional Arrays

Recreate:

(See: oneToAHundred.cpp)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

