
Loops
Ch 3.3-3.4

Announcements

HW0 due tonight

HW1 posted, due next week
(has two parts)

if/else vs loops

if/else statements makes code inside
only sometimes run

Loops make code inside run more
than once

Both use boolean expressions to
determine if the code inside is run

while loop

A while loop tests a bool expression
and will run until that expression is false

(See: whileLoop.cpp)

bool exp., no ;

while loop

The bool expression is tested when
first entering the while loop

And!
When the end of the loop code is reached
(the } to close the loop)

while loop

It can be helpful to manually work out what
loops are doing and how variables change
in each loop iteration

This will build an insight into how loops
work and will be beneficial when working
with more complicated loops

while loop

3 parts to any (good) loop:

- Test variable initialized

- bool expression

- Test variable updated inside loop

for loop

A for loop is a compacted version of the
while loop (the 3 important parts are together)

for loops are used normally when iterating
over a sequence of numbers (i.e. 1, 2, 3, 4)

(See: forLoop.cpp)

Initialization boolean expression
Update

do-while loop

A do-while loop is similar to a normal
while loop, except the bool expression
is only tested at the end of the loop
(not at the start)

Note semicolon!

(See: doWhile.cpp)

do-while loop

Q: Why would I ever want a do-while loop?

A: When the first time the variable is set is
inside the loop.

You can initialize the variable correctly and
use a normal while loop, but this makes the
logic harder

Loops

99 bottles of beer on the wall, 99 bottles of beer!
Take one down, pass it around, 98 bottles of beer on the wall!

98 bottles of beer on the wall, 98 bottles of beer!
Take one down, pass it around, 97 bottles of beer on the wall!

97 bottles of beer on the wall, 97 bottles of beer!
Take one down, pass it around, 96 bottles of beer on the wall!
...

Write a program to output the above song
(See 99beer.cpp)

continue

There are two commands that help control
loops:

continue tells the loop
to start over again

break stops the loop

continue

continue command can be issued to
start at the next iteration of a loop

doSkip
true

(See: continue.cpp)

break

break will exit the current loop

(See: break.cpp)

doSkip
true

Infinite loops

(See: countingSheep.cpp)

while loop

https://www.youtube.com/watch?v=7-Nl4JFDLOU

Loops to sum

Loops allow you to decide how many times
a piece of code should run on the fly
(i.e. at run time, not compile time)

You can either directly prompt the user
how many times or make a special value
to “exit” on

(See: sumLoop.cpp)

Debugging

When your program is not working, it is
often helpful to add cout commands
to find out what is going on

Normally displaying the value of your
variables will help you solve the issue

Find up until the point where it works, then
show all the values and see what is different
than you expected

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

