
Strings & Branching

bool

bool - either true or false

You have the common math comparisons:
> (greater than), e.g. 7 > 2.5 is true
== (equals), e.g. 5 == 4 is false
<= (less than or eq), e.g. 1 <= 1 is true

If you cout this, “false” will be 0
and “true” will be 1 (anything non-zero is T)

if statement

Code inside an if statement is only run
if the condition is true.

Need parenthesis
(no semi-colon)

Indent

(See: ifElse.cpp)

boolean values

ints will automatically be converted to bool,
which can cause errors:
int x = 2;
if(! x>5) will be false

Why?

boolean values

ints will automatically be converted to bool,
which can cause errors:
int x = 2;
if(! x>5) will be false

Why?
A: order of operations will do the unary
operator first (the '!')
if (! x>5) will become if ((!2) > 5)
... if ((!true) > 5) ... if (false > 5) ... if (0 > 5)

if/else statement

Immediately after an if statement,
you can make an else statement

If the “if statement” does not run,
then the else statement will

If you do not surround your code with braces
only one line will be in the if (and/or else)
statement

Logical operators

> (greater than), e.g. 7 > 2.5 is true
== (equals), e.g. 5 == 4 is false
< (less than), e.g. 1 < 1 is false
>= (greater than or equal to), e.g. 1 <= 1 is true
!= (not equal to), e.g. 8 != 7 is true
<= (less than or equal to), e.g. 6 <= 2 is false

 ! (not, negation), e.g. !true is false

These are all the operators that result in a
bool:

Complex expressions

Two boolean operators:
&& is the AND operations
|| is the OR operations

Complex expressions

AND operation removes Ts from the result
The OR operation adds Ts to the result

Evaluate (!p OR q) AND (p)

p q !p !p OR q (!p OR q) AND (p)
T T F T T
T F F F F
F T T T F
F F T T F

Complex expressions

Write an if statement for checking if a
variable (int) x is a positive odd number.

Hint: You may want to use the remainder
(also called modulus) operator (the % sign).

For example, 5 % 3 = 2

Complex expressions

Humans tend to use the english word OR
to describe XOR (exclusive or)

“You can get a side order of a salad, fries or
a soup..”

Did you think the statement above meant
you could get all three?

; and if

Please always put {} after if-statements

The compiler will let you get away with
not putting these (this leads to another issue)

If you do not put {} immediately after an if,
it will only associate the first command
after with the if-statement
(see: ifAndSemi.cpp)

Random numbers

To use random numbers, you need to do:
1. Run srand(time(0)) once
2. Use rand() to actually generate a number

(See: rng.cpp)

DO ONLY ONCE AT
THE START OF MAIN
AND NEVER AGAIN!

Complex expressions

If statements for when x...

... is between 10 and 20 (inclusive)

Cannot say: 10 <= x <= 20 (why?)

... is a vowel (x is type char)

Short-circuit evaluation

Short-circuit evaluation is when you have
a complex bool expression (&& or ||)
but you don't need to compute all parts.

If this is false, then it will not check next

(See: shortCircuit.cpp)

Short-circuit evaluation

Simple cases of short-circuit:
When you have a bunch of ORs

if(expression || exp || exp || exp)
Once it finds any true expression,
if statement will be true

When you have a bunch of ANDs
if(expression && exp && exp && exp)

Once it finds any false expression,
if statement will be false

Complex expressions

Be careful when negating, that you follow
De Morgan's Law:

bool a, b;
!(a OR b) is equivalent to (!a) AND (!b)
!(a AND b) is equivalent to (!a) OR (!b)

“Neither rainy or sunny” means
“Both not rain and not sunny”

Nested if statements

You can have as many if statements inside
each other as you want.

Nested if statements

From a truth table perspective, nested loops
are similar to AND

The previous if code is equivalent to:

However, sometimes you want to do other
code between these evaluations

Nested if statements

(See: bridgeOfDeath.cpp)

Scope

Where a variable is visible is called its scope

Typically variables only live inside the block
(denoted with matching { and })

A variable lives until the block is closed,
so inner blocks can see everything from
the block it was created inside

Scope

(See: scope.cpp)

Multiway if/else

This is a special format if you put an
if statement after an else.

(See: grades.cpp)

This second “if statement” only is tested
when the first “if statement” is not true

Switch

A switch statement checks to see if a
variable has a specific value.

Controlling Variable

Case label

Break statement

Switch

If the value of the controlling variable
is found in a case label, all code until
a break statement is ran (or the switch ends)

Switch statements only test equality
with case labels (not greater or less than)

(See: switch.cpp)

Switch

Switch statements can be written as
multiway if/else statements.

(See: switchToIf.cpp)

Could use just “if statements” but
“else if” shows only one of these will run

Conditional operator

We will not use in this class, but if you
use other people's code you will encounter

Example:
max = (x>y) ? x : y;
(See: max.cpp)

Shorthand for an if-else statement

(boolean) ? [if true] : [if false]

Loops
Ch 3.3-3.4

if/else vs loops

if/else statements makes code inside
only sometimes run

Loops make code inside run more
than once

Both use boolean expressions to
determine if the code inside is run

while loop

A while loop tests a bool expression
and will run until that expression is false

(See: whileLoop.cpp)

bool exp., no ;

while loop

The bool expression is tested when
first entering the while loop

And!
When the end of the loop code is reached
(the } to close the loop)

while loop

It can be helpful to manually work out what
loops are doing and how variables change
in each loop iteration

This will build an insight into how loops
work and will be beneficial when working
with more complicated loops

while loop

3 parts to any (good) loop:

- Test variable initialized

- bool expression

- Test variable updated inside loop

for loop

A for loop is a compacted version of the
while loop (the 3 important parts are together)

for loops are used normally when iterating
over a sequence of numbers (i.e. 1, 2, 3, 4)

(See: forLoop.cpp)

Initialization boolean expression
Update

do-while loop

A do-while loop is similar to a normal
while loop, except the bool expression
is only tested at the end of the loop
(not at the start)

Note semicolon!

(See: doWhile.cpp)

do-while loop

Q: Why would I ever want a do-while loop?

A: When the first time the variable is set is
inside the loop.

You can initialize the variable correctly and
use a normal while loop, but this makes the
logic harder

Loops

99 bottles of beer on the wall, 99 bottles of beer!
Take one down, pass it around, 98 bottles of beer on the wall!

98 bottles of beer on the wall, 98 bottles of beer!
Take one down, pass it around, 97 bottles of beer on the wall!

97 bottles of beer on the wall, 97 bottles of beer!
Take one down, pass it around, 96 bottles of beer on the wall!
...

Write a program to output the above song
(See 99beer.cpp)

continue

There are two commands that help control
loops:

continue tells the loop
to start over again

break stops the loop

continue

continue command can be issued to
start at the next iteration of a loop

doSkip
true

(See: continue.cpp)

break

break will exit the current loop

(See: break.cpp)

doSkip
true

Infinite loops

(See: countingSheep.cpp)

while loop

https://www.youtube.com/watch?v=7-Nl4JFDLOU

Loops to sum

Loops allow you to decide how many times
a piece of code should run on the fly
(i.e. at run time, not compile time)

You can either directly prompt the user
how many times or make a special value
to “exit” on

(See: sumLoop.cpp)

Debugging

When your program is not working, it is
often helpful to add cout commands
to find out what is going on

Normally displaying the value of your
variables will help you solve the issue

Find up until the point where it works, then
show all the values and see what is different
than you expected

	Slide 1
	boolean
	Slide 4
	t/f value
	Slide 6
	Slide 8
	Slide 10
	complex expressions
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18
	Slide 19
	short circuit
	Slide 22
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

