
Types

Variables

We (hopefully) know that if you say:

You ask the computer for a variable called x

Each variable actually has an associated type
describing what information it holds (i.e. what
can you put in the box, how big is it, etc.)

Fundamental Types

bool - true or false
char - (character) A letter or number
int - (integer) Whole numbers
long - (long integers) Larger whole numbers
float - Decimal numbers
double - Larger decimal numbers

See: intVSlong.cpp

int vs long?

int - Whole numbers in the approximate range:
-2.14 billion to 2.14 billions (109)

long - Whole numbers in the approximate range:
-9.22 quintillion to 9.22 quintillion (1018)

Using int is standard (unless you really need
more space, for example scientific computing)

float vs double?

float vs double?

float is now pretty much obsolete.

double takes twice as much space in the computer
and 1) has wider range and 2) is more precise

Bottom line: use double (unless for a joke)

float and double

Both stored in scientific notation

double x = 2858291;

Computer's perspective:
x = 2.858291e6

or
x = 2.858291 * 106

Welcome to binary

Decimal: Binary:
1/2 = 0.5 0.1

1/3 = 0.3333333 0.010101010101

1/10 = 0.1 0.0001100110011

double is often just an approximation!

Numerical analysis

Field of study for (reducing) computer
error

See: subtractionError.cpp

Can happen frequently when solving
system of linear equations

bool

bool - either true or false

You have the common math comparisons:
> (greater than), e.g. 7 > 2.5 is true
== (equals), e.g. 5 == 4 is false
<= (less than or eq), e.g. 1 <= 1 is true

Note: double equals (==) asks a question,
a single equals (=) changes values

bool

You can use integers to represent bool also.

false = 0
true = anything else (1 is what is stored)

(You probably won't need to do this)

int or double?

If you are counting something (money),
use int

If you are dealing with abstract concepts (physics),
use double

int doesn't make “rounding” mistakes

Double trouble!

(See: doubleTrouble.cpp)

Double trouble!

When comparing doubles, you should use
check to see if relative error is small:

fabs((x-y)/x) < 10E-10
(double has about 16 digits of accuracy
so you could go to 10E-15 if you want)

For comparing Strings, use: (0 if same)
string1.compare(string2)

Primitive type hierarchy

bool < int < long < float < double

If multiple primitive types are mixed
together in a statement, it will convert
to the largest type present

Otherwise it will not convert type

Primitive type hierarchy

int x;
double y;

x+y

int x;
int y;

x/y

Converted to
double

Not converted
(still int)

Integer division

See: simpleDivision.cpp
Can be fixed by making one a double:

1/2.0
or
 static_cast<double>(1)/2

Constants

You can also make a “constant” by adding
const before the type

This will only let you set the value once

const double myPI = 3.14;
myPI = 7.23; // unhappy computer!

Functions

Functions allow you to reuse pieces of code
(either your own or someone else's)

Every function has a return type, specifically
the type of object returned

sqrt(2) returns a double, as the number
will probably have a fractional part

The “2” is an argument to the sqrt function

Functions

Functions can return void, to imply they
return nothing (you should not use this in an
assignment operation)

The return type is found right before the
functions name/identifier.

int main() { ... means main returns an int
type, which is why we always write return 0
and not return 'a' (there is no char main())

Functions

A wide range of math functions are inside
<cmath> (get it by #include <cmath>; at top)

We can use these functions to compute Snell's
Law for refraction angle

(See: math.cpp)

	Slide 1
	primitive type
	Slide 3
	int vs long
	Slide 5
	float vs double
	Slide 7
	binary
	numerical analysis
	boolean
	boolean note
	int vs double
	double trouble
	Slide 14
	primitive type hierarchy
	Slide 16
	int division
	Slide 19
	Slide 20
	Slide 21
	Slide 22

