
C++ Basics

Lab 1 this week!

Homework posted Friday
(will be on gradescope)

Announcements

Avoid errors

To remove your program of bugs,
you should try to test your program on
a wide range of inputs

Typically it is useful to start with a small
piece of code that works and build up
rather than trying to program everything
and then debug for hours

Variables

To use variables two things must be done:
- Declaration
- Initialization

See: uninitialized.cpp

I am 0 inches tall.
I am -1094369310 inches tall.

Example if you forget to initialize:

Variables are objects in program

Variables

int x, y, z;
x = 2;
y = 3;
z = 4;

int x=2, y=3, z=4;

Same as:

Declaration

Initialization

Variables can be declared anywhere
(preferably at start)

Assignment operator

= is the assignment operator

The object to the right of the equals sign
is stored into the object in the left

int x, y;
y = 2;
x = y+2;

See: assignmentOp.cpp

Assignment operator

= is NOT a mathematic equals

x=3;
x=4; // computer is happy!

This does not mean 3=4

Assignment operator

To the left of = needs to be a valid object
that can store the type of data on the right

int x;
x=2.6; // unhappy, 2.6 is not an integer

x+2 = 6; // x+2 not an object

2 = x; // 2 is a constant, cannot store x

Assignment operator

What does this code do?

int x = 2, y = 3;
y=x;
x=y;

What was the intention of this code?

Increment operators

What does this code do?

int x = 2;
x=x+1;

Increment operators

What does this code do?

int x = 2;
x=x+1;

Same as:
x+=1;

or
x++;

Increment operators

Two types of increment operators:

x++; // increments after command
vs

++x; // increments before command

Complex assignments

The following format is general for
common operations:

variable (operator)= expression
variable = variable (operator) expression
Examples:

x+=2 x = x + 2
x*=y+2 x = x * (y + 2)

Order of operations

Order of precedence (higher operations
first):
-, +, ++, -- and ! (unary operators)
*, / and % (binary operators)
+ and - (binary operators)

% is remainder operator
(example later in simpleDivision.cpp)

Order of operations

Binary operators need two arguments
Examples:
2+3, 5/2 and 6%2

Unary operators require only one argument:
Examples: (see binaryVsUnaryOps.cpp)
+x, x++, !x

(! is the logical inversion operator for bool)

Identifiers

Identifiers

An identifier is the name of a variable (or object,
class, method, etc.)

int sum;

type

identifier

- Case sensitive
- Must use only letters,

numbers or _
- Cannot start with

a number
- (Some reserved

identifiers, like main)

Identifiers

Already did this in week 1!
See: RuntimeError.cpp

Identifiers

1) james parker
2) BoByBoY
3) x3
4) 3x
5) x_______
6) _______x
7) Home.Class
8) Five%
9) x-1

Which identifiers are valid?

Identifiers

1) james parker
2) BoByBoY
3) x3
4) 3x
5) x_______
6) _______x
7) Home.Class
8) Five%
9) x-1

Which identifiers are valid?

Identifiers

(See: float.cpp)

Identifiers

Types

Variables

We (hopefully) know that if you say:

You ask the computer for a variable called x

Each variable actually has an associated type
describing what information it holds (i.e. what
can you put in the box, how big is it, etc.)

Fundamental Types

bool - true or false
char - (character) A letter or number
int - (integer) Whole numbers
long - (long integers) Larger whole numbers
float - Decimal numbers
double - Larger decimal numbers

See: intVSlong.cpp

int vs long?

int - Whole numbers in the approximate range:
-2.14 billion to 2.14 billions (109)

long - Whole numbers in the approximate range:
-9.22 quintillion to 9.22 quintillion (1018)

Using int is standard (unless you really need
more space, for example scientific computing)

float vs double?

float vs double?

float is now pretty much obsolete.

double takes twice as much space in the computer
and 1) has wider range and 2) is more precise

Bottom line: use double (unless for a joke)

float and double

Both stored in scientific notation

double x = 2858291;

Computer's perspective:
x = 2.858291e6

or
x = 2.858291 * 106

Welcome to binary

Decimal: Binary:
1/2 = 0.5 0.1

1/3 = 0.3333333 0.010101010101

1/10 = 0.1 0.0001100110011

double is often just an approximation!

Numerical analysis

Field of study for (reducing) computer
error

See: subtractionError.cpp

Can happen frequently when solving
system of linear equations

bool

You can use integers to represent bool also.

false = 0
true = anything else

(You probably won't need to do this)

int or double?

If you are counting something (money),
use int

If you are dealing with abstract concepts (physics),
use double

int doesn't make “rounding” mistakes

Primitive type hierarchy

bool < int < long < float < double

If multiple primitive types are mixed
together in a statement, it will convert
to the largest type present

Otherwise it will not convert type

Primitive type hierarchy

int x;
double y;

x+y

int x;
int y;

x/y

Converted to
double

Not converted
(still int)

Integer division

See: simpleDivision.cpp
Can be fixed by making one a double:

1/2.0
or
 static_cast<double>(1)/2

Constants

You can also make a “constant” by adding
const before the type

This will only let you set the value once

const double myPI = 3.14;
myPI = 7.23; // unhappy computer!

Functions

Functions allow you to reuse pieces of code
(either your own or someone else's)

Every function has a return type, specifically
the type of object returned

sqrt(2) returns a double, as the number
will probably have a fractional part

The “2” is an argument to the sqrt function

Functions

Functions can return void, to imply they
return nothing (you should not use this in an
assignment operation)

The return type is found right before the
functions name/identifier.

int main() { ... means main returns an int
type, which is why we always write return 0
and not return 'a' (there is no char main())

Functions

A wide range of math functions are inside
<cmath> (get it by #include <cmath>; at top)

We can use these functions to compute Snell's
Law for refraction angle

(See: math.cpp)

Input and output

Strings and input

char can only hold a single letter/number,
but one way to hold multiple is a string

string str;
cin >> str;

The above will only pull one word,
to get all words (until enter key) use:

getline(cin, str); (See: stringInput.cpp)

More Output

When showing doubles with cout, you can
change how they are shown

For example, to show a number as dollars and
cents, you would type (before cout):

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

More Output

There are two ways to get output to move
down a line: endl and “\n”

cout << endl;

... is the same as...

cout << “\n”

I will use both when coding

Madlibs

(see: madlibs.cpp)

bool

bool - either true or false

You have the common math comparisons:
> (greater than), e.g. 7 > 2.5 is true
== (equals), e.g. 5 == 4 is false
<= (less than or eq), e.g. 1 <= 1 is true

If you cout this, “false” will be 0
and “true” will be 1 (anything non-zero is T)

Double trouble!

(See: doubleCompare.cpp)

Double trouble!

When comparing doubles, you should use
check to see if relative error is small:

fabs((x-y)/x) < 10E-10
(double has about 16 digits of accuracy
so you could go to 10E-15 if you want)

For comparing Strings, use: (0 if same)
string1.compare(string2)

	Slide 1
	Slide 2
	Slide 5
	vars
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	swap
	+=
	Slide 13
	Slide 14
	Slide 15
	op order
	Slide 17
	Slide 19
	identifiers
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	primitive type
	Slide 28
	int vs long
	Slide 30
	float vs double
	Slide 32
	binary
	numerical analysis
	boolean note
	int vs double
	primitive type hierarchy
	Slide 38
	int division
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	boolean
	double trouble
	Slide 55

