
Review

Final exam

Final exam will be 11-12 problems, drop any 2

Cumulative up to and including week 13
(emphasis on weeks 10-13: classes & pointers)

2 hours exam time, so 12 min per problem
(midterm 2 had 8-ish)

Review: Overview

loop if/else ops functions
Essentials

types
arrayscope

Very
Useful

Advanced

Peripheral
file I/O

string

recursion

classes

op. overload

pointers
dynamic memory

inheritance

Review: Overview

loop if/else ops functions
Essentials

types
arrayscope

Very
Useful

Advanced

Peripheral
file I/O

string

recursion

classes

op. overload

pointers
dynamic memory

inheritance

Fundamental Types

bool - true or false
char - (character) A letter or number
int - (integer) Whole numbers
double - Larger decimal numbers

long - (long integers) Larger whole numbers
float - Decimal numbers

Functions

Functions allow you to reuse pieces of code
(either your own or someone else's)

Every function has a return type, specifically
the type of object returned

sqrt(2) returns a double, as the number
will probably have a fractional part

The “2” is an argument to the sqrt function

Functions

The return statement value must be the same
as the return type (or convertible)

3 to x, 5 to y... value 8 returned and stored in x

return type function header

body return statement

parameters (order matters!)

Functions

Function call stack (after returning, start
from where the previous function called it)

Overloading - same function name, different
arguments (typically similar)

Call-by-reference (not copy)

Functions should be minimal
addresses share

Order of operations

Order of precedence (higher operations first):

:: (scope resolution)
functions, . (dot), -> (sorta binary operators)
&, *, -, +, ++, -- and ! (unary operators)
*, / and % (binary operators)
+ and - (binary operators)
==, >=, <= and != (binary operators)
&& and || (binary operators)
=, +=, -=, *=, /=, %= (binary operators)

if/else

-an else statement needs an associated if
-else/if construct ensures only one block is run
-short circuit evaluation

Loops

3 parts to any (good) loop:
-Test variable initialized
-bool expression
-Test variable updated inside loop

3 types of loops:
while - general purpose
for - known number of iterations (arrays)
do-while - always run at least once (user input)

continue/break

There are two commands that help control
loops:

continue tells the loop
to start over again
(next iteration)

break stops the loop

Review: Overview

loop if/else ops functions
Essentials

types
arrayscope

Very
Useful

Advanced

Peripheral
file I/O

string

recursion

classes

op. overload

pointers
dynamic memory

inheritance

C-Strings and strings

c-string uses null character to tell when to end

(c++) string is a class (which is a type) and
is newer and has many functions:
- find(), substr(), at() or [], etc.

Essential for dealing with more than one char
at a time

Scope

Variables exist in the braces where it is
declared (in { })

x anywhere here

knows about x and y

knows x, y and z

Scope

main()'s x lives here

add() has a different x,
which along with y and z
exist in here

Scope

Arrays

Arrays store multiple things of the same type

After declaration any use of [] is interpreted
as element indexing

Arrays are memory addresses, shares with
functions (cannot call-by-reference)

Type, [] means array
variable name length of array

Multidimensional Arrays

four rows five columns

Must specify (some parts of) size when using
as argument in function

Classes

A class is a way to bundle functions and
variables (different types) into one logical unit

Classes are custom made types (like int),
that you make and define

Only “date” variables
can read or modify

Anyone can edit/use

Classes

Every time you actually create an object
of the class type, you must run a constructor

Constructors should initialize (probably)
all variables inside the class

Review: Overview

loop if/else ops functions
Essentials

types
arrayscope

Very
Useful

Advanced

Peripheral
file I/O

string

recursion

classes

op. overload

pointers
dynamic memory

inheritance

Recursion

There are two important parts of recursion:
-A stopping case that ends the recursion
-A reduction case that reduces the problem

Identify the problem sub-structure, then move
inputs towards the base case

You can assume your function works as you
want it to (and it will if you do it properly!)

Pointers

A pointer is used to store a memory address
and denoted by a * (star!)

As arrays, the * on the declaration is special
(declares a type only)

Every other use of * will try to go where the
variables is pointing to

declare type of xp as int*
point xp to address of x

dereference pointer

Pointers - nullptr

If you try to go to a place outside your
memory, you will seg fault

This is especially true with the nullptr (NULL)

(Typically the
values when
uninitialized)

Dynamic memory

Dynamic memory makes variables without
names (much as array elements do not have
individual names)

Pointers can hold both a single variable
or an array of variables:

Dynamic memory in classes

If a variable inside a class uses dynamic
memory, we should build a deconstructor
(which does the “delete”ing)

If we need one of these, then we need them all:
-deconstructor
-copy-constructor
-overload “=” operator

deconstructor copy constructor
operator =

Inheritance

To create create a child class from a parent
class, use a : in the (child) class declaration

This shares functions and variables from the
parent class to the child
child class parent class

protected

Parent

Child

main()

Picture:
Red = private
Green = protected
Blue = public

Variables should be
either private or
protected

Dynamic binding

Store child as parent, can keep all of child
if you use pointers

Add virtual to use more appropriate function
in pointed object:

Review: Overview

loop if/else ops functions
Essentials

types
arrayscope

Very
Useful

Advanced

Peripheral
file I/O

string

recursion

classes

op. overload

pointers
dynamic memory

inheritance

File I/O

4 steps to file I/O:
Declare, open, use (loop), close

input should check to
see if file opened

output overrides file by
default

After this point use the variable (“in” above)
in place of cin/cout for read/write (respective)

End of file (EOF)

3 ways of looping over whole file (reading)

eof() will not be true until a read fails, so
must check for eof() immediately after reading

reads from file

does not read from file (just tells if at end)

Operator overloading

Will convert:
function in class: friend function:

... defined as... ... defined as...

Use friend over in-class version if order
matters (i.e. “cout << c” not “c << cout”)

access to privates

777773 3 3 3 3

Problems

Suppose you want a length 10 array, but all the
odd indexes are represented by the same
number

This is also true for the even numbers:

change x[0] to 5:

777775 5 5 5 5

(picture not quite
accurate)

Problems

Write some code to make the lines below
syntactically correct and cout different things:

Problems

Can you make a pointer point to itself?
Why or why not?

Problems

Suppose there exists a “seat” class

Write the “classroom” class with a constructor
that takes in an integer and makes a dynamic
array of that many seats

What else does the classroom class need
to have?

The End

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	primitive type
	Slide 7
	Slide 8
	Slide 9
	op order
	Slide 11
	Slide 12
	continue
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

