
Templates
Ch 17

Highlights

- Variable types

Review: Types

A type is a container for a specific value

data
value

data
type

Review: Types

It is normally not good to mix these up...

Review: Types

C++ is fairly picky about most types, only
certain values can be stored in a type

You can convert between types easily
(such as from int to double)

But not others (hard to go int to string)

42

int

“hello world”

string

'x'

char

Templates

While C++ has no “I can hold any data” type,
it does have a “I can be any type” variables

That is there is no “magic” type that can be
both int and string simultaneously

Instead, you can specify that “magic” will be
some type... you just don't know what yet

In C++ we call this a template

Templates

You can think of this not as “a type to hold all
values” but as “a box to hold any type”

Templates

You have actually seen templates before,
namely static_cast (a function)

You provide the type you wish to convert the
data into, but outside of the normal parenthesis

You can put any type you want here!

Templates

You can use a variable-type for both:
1. Functions
2. Classes

This allows you to make
more general functions
(thus less code)

However, this function should be generalizable
(for example, factorial only works for ints...)

Function: templates

To use a variable-type, you put template before
the function and specify the type variable

This lets you use “T” as a type anywhere in
the function
(see: coutMe.cpp) (see: goodSwap.cpp)

T is a variable
for the type

Function: templates

You can also use multiple types variables,
just separate them with a comma:

You can have as many different (or similar)
types of input as you want

(Although this does not work well for swap)
(see: multipleTypes.cpp)

Function: templates

You can check to see if the input types are the
same by doing this:

(see: checkSameType.cpp)

Function: notation

As C++ is rather old, there are a lot of ways
to say the same thing (same with templates)

These both mean the same thing (mostly):

Some compilers also see these as the same:

Bad templates!

Templates are not magic that allow you to
do anything with any type!

If an operation does not exist between types
and you try and use it, computer will get angry

You also cannot ignore types completely by
making everything a template (main must
have real types at the very least)
(see: badTemplates.cpp)

Classes: templates

Templates for classes are very similar:

After using template, you can use “T” as a
type inside the class anywhere

(see: classTemplate.cpp)

vector class

Normal arrays have multiple issues:
(1) cannot grow (have to do partially filled)
(2) cannot insert (have to shift)

However, there is a class that does these things
for you automatically called “vector”

It also uses templates so you can store any
type (much like normal arrays)
(see: vector.cpp)

vector class

Useful vector functions:
push_back(array_type) - adds this element

to back of array
at(int) or [int] - index into the array at this

index
size() - how many elements there are now
insert(iterator, array_type) - inserts an

element at iterator's spot (shifts current
element and all later down one)

erase(iterator) - removes an element

	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22

