Templates
Ch 17

POOR DESIGN TEMPLATE

xample.



I Highlights

I - Variable types

I template <typename T>
void dostuff(T Xx)

!
}

cout << X << endl;

template <typename T>
class holdinStuff {
public:

T stuff;
1



Review: Types

A type is a container for a specific value




Review: Types

It is normally not good to mix these up...

I .

If your DOG
does a POO
~Please put it
.in a litter bin.

Please help keep our
open spaces clean.



Review: Types

C++ is fairly picky about most types, only
certain values can be stored in a type

42 X' “hello world”
Y Y Y
int char string

You can convert between types easily
(such as from int to double)

But not others (hard to go int to string)



I While C++ has no “I can hold any data™ type,
I it does have a *“I can be any type” variables

Templates

That 1s there 1s no “magic” type that can be
both int and string simultaneously

Instead, you can specify that “magic” will be
some type... you just don't know what yet

In C++ we call this a template




I You can think of this not as ““a type to hold all
I values™ but as ““a box to hold any type”

Templates




You have actually seen templates before,
I namely static cast (a function)

Templates

You provide the type you wish to convert the
data into, but outside of the normal parenthesis

cout << static cast<char>(100) << endl;

/

You can put any type you want here!



Templates
You can use a variable-type for both:
1. Functions NOT/DUPLICATING|COL
2. Classes

This allows you to make

more general functions

(thus less code)

However, this function should be generalizable
(for example, factorial only works for ints...)



Function: templates

To use a variable-type, you put template before
the function and specify the type variable

template <typename T>
v01d coutMe(T x)

\ T is a variable
cout << x << endl; for the type

}
This lets you use “T” as a type anywhere 1n

the function
(see: coutMe.cpp) (see: goodSwap.cpp)



Function: templates

You can also use multiple types variables,
just separate them with a comma:

template <typename T , typename T2>
void mswap(T& a, T2& b);

You can have as many different (or similar)
types of input as you want

(Although this does not work well for swap)
(see: multipleTypes.cpp)



I You can check to see 1f the input types are the
I same by doing this:

template <typename T1l, typename T2>
void foo(T1l x, T2 y)
{
if( is same<T1,T2>::value) ({
cout <<
}
else {
cout <<

}

Function: templates

}

(see: checkSameType.cpp)



As C++ 1s rather old, there are a lot of ways
to say the same thing (same with templates)

Function: notation

These both mean the same thing (mostly):

template <typename T>
template <class T>

Some compilers also see these as the same:

coutMe<int>(2):
coutMe(2):



Bad templates!

Templates are not magic that allow you to
do anything with any type!

If an operation does not exist between types
and you try and use 1t, computer will get angry

You also cannot ignore types completely by
making everything a template (main must
have real types at the very least)

(see: badTemplates.cpp)



Templates for classes are very similar:

I template <typename T>
class holdinStuff {
public:
T stuff;
¥

Classes: templates

After using template, you can use “T” as a
type 1nside the class anywhere

(see: classTemplate.cpp)



Normal arrays have multiple issues:
(1) cannot grow (have to do partially filled)
(2) cannot insert (have to shift)

vector class

However, there is a class that does these things
for you automatically called “vector”

#include
It also uses templates so you can store any
type (much like normal arrays)
(see: vector.cpp)



vector class

Usetul vector functions:
I push_back(array_type) - adds this element
to back of array

at(int) or [int] - index into the array at this
index

size() - how many elements there are now

insert(iterator, array_type) - inserts an
element at iterator's spot (shifts current
element and all later down one)

erase(iterator) - removes an element



	Slide 1
	Slide 2
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 22

