
Late binding
Ch 15.3

Highlights

- Late binding for variables

Review: Derived classes

Today we will deal more with inheritance

Mainly we will focus on how you can store
a child class in a parent container (sort of)

Questions we will answer:
What is this line of code doing exactly?
Are there other ways of doing this?

Early vs late binding

Static binding (or early) is when the computer
determines what to use when you hit the
compile button

Dynamic binding (late) is when the computer
figures out the most appropriate action
when it is actually running the program

Much of what we have done in the later parts
of class is similar to late binding

Static binding

When you go to a fast-food-ish restaurant,
you get one tray, regardless of what you order

The key is before they knew what you were
ordering, they determined you needed one tray

Dynamic binding

When you order a drink, they do not just give
you a standard cup and say “fill to this line”

Now, they have to react to what you want
and give you the correct cup size (not a
predetermined action, thus dynamic binding)

Static binding

Checking out at a grocery store, all items are
scanned and added to the bill in the same way

The same program on the computer runs for
all items and just identifies their price

Dynamic binding

After you pay, you put the food into bags
(paper/plastic/your own)

What items go where depends on what you
want to use and the item properties (weight,
dampness, rigidness, etc.)

Both

All animals need to mate, so we could build
a generic Animal class with a function mate()

However, the gender roles in mate() are very
different between species...

Static/dynamic binding

snack caring

Static/dynamic binding

Consider this code:

You know the output even before the program
runs (you know at compile time = static)

While this code, you only know the output
when the program runs (i.e. dynamic):

(See: compleVsRun.cpp)

Static/dynamic binding

static = rigid/constant
dynamic = flexible/adaptive

Static/dynamic binding

Static/dynamic binding is similar to how we
originally made arrays: (static/early binding)

To dynamic memory arrays: (dynamic/late)

Mini-quiz (ungraded)

What is in p at end of main()?
1. x=2
2. x=2, y=10
3. x=1, y=10
4. x=1
(Hint: what happens on this:)

= between parent/child

It is debatable how we should interpret line:

In C++ (not some other languages), this just
copies the parts of the parent class over

Parent

Child

Parent

=int x = 2 int x = 2

int y = 10
p

c

Mini-quiz (ungraded)

What is at p now?
1. x=2
2. x=2, y=10
3. x=1, y=10
4. x=1

= between parent/child pointers

When the objects are pointers, lines line just
changes the object being pointed to
(but not any information inside either class)

Parent

Child

Parent

=
int x = 1 int x = 2

int y = 10
p c

Parent* Child*
go go

Dynamic variable binding

If a Parent type is pointing to a Child instance,
we cannot directly access them (variables
cannot be “virtual”...)

Instead, we have to tell it to act like a
Child* by casting it: (bad practice as y public)

(see: dynamicObject.cpp)
(see: whatMyType.cpp)

Dynamic variable binding

If p points to a Parent instance, the below line
is VERY BAD (but it might work... sorta...)

You will be fooling around in some part of
memory that is not really associated p
(though you might not crash...)

(see: badMemoryManagement.cpp)
(see: memoryOops.cpp)

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

