
Inheritance
Ch 15.1-15.2

Highlights

- protected

- reuse constructors

Derived classes

Let's make this story into code!

To create create a child class from a parent
class, use a : in the (child) class declaration

(See last time: dunecat.cpp)

child class parent class

Derived classes

The way data is stored in inherited classes
is a bit more complex

Children objects have both a “child” class
part and a “parent” class part in their box

While the “parents” only have the “parent”
part

(See: childParent.cpp)

Constructors + inheritance

Constructors need to be run every time you
make an object...

Now that objects have multiple types what
constructors are being run?

Both actually (again)

(See: computerConstructor.cpp)

Constructors + inheritance

If you do not specify what constructor to use,
it will use the default constructor
(or give an error if this does not exist)

You can also specify a non-default constructor
by using a “:” after the child's constructor

(See: computerConstructorV2.cpp)

protected

We know about two scopes for variables:
1. public (anyone, anywhere can use)
2. private (only my class can use)

But there is a third:
3. protected (me or my children can use)

If you think your children will modify/use
a variable, make it protected
(See: classScopes.cpp)

protected

Parent

Child

main()

Picture:
Red = private
Green = protected
Blue = public

Variables should be
either private or
protected

protected

While children technically inherit the private
variables/functions, they cannot use them

So effectively, they do not inherit these

It is not considered bad practice to make
variables protected (unlike public)

Does access matter?
Yes, because computer viruses

Redefine functions

As children add functionality to a parent class,
they may want to redefine some functions

This is different than overloading, where you
create multiple versions with the same name

When you redefine, you are basically
replacing an old function with a new version

(See: computerRedefine.cpp)

Redefine functions

After you have redefined a function,
the default name will go to the child's version

However, you can still access the parent's
version by using “::” (class affiliation)

Not inherited

As we saw before, constructors are not really
inherited (though they are called)

overloading operators will also not be
inherited (as computer cannot convert parent
into child class)

Destructors are also not inherited, but
the parent's version of the destructor will
always run (See: childDestructor.cpp)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

