
Dynamic memory in class
Ch 9, 11.4, 13.1 & Appendix F

Review: constructors

Constructors are special functions that have
the same name as the class

Use a constructor to create an instance of the
class (i.e. an object of the blueprint)

Constructors + dynamic

What if we have a variable inside a class
that uses dynamic memory?

When do we stop using this class?
What do we do if the int* was private?

(See: classMemoryLeak.cpp)

Constructors + dynamic

Often, we might want a class to retain its
information until the instance is deleted

This means either:
1. Variable's scope ends

(automatically deleted)

2. You manually delete a dynamically
created class with the delete command

oops out of scope = gone

Destructors

Just as a constructor must run when a class
is created...
A destructor will always run when a class
object/instance/variable is deleted

Destructors (like constructors) must have
the same name as the class, but with a ~:

(See: classMemoryLeakFixed.cpp)

constructor

destructor

Destructors

A good analogy is file I/O, as there are 3 steps:

1. Open the file (read or write)
2. Use the file
3. Close the file

The constructor is basically requiring step 1
to happen

Do you want #3 to be automatic or explicit?

Destructors

The benefit of destructors is the computer
will run them for you when a variable ends

This means you do not need to explicitly
tell it when to delete the dynamic memory,
simply how it should be done

This fits better with classes as a blueprint
that is used in other parts of the program
(see: destructor.cpp)

	Slide 1
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

