| Dynamic memory 1n class
I Cho,11.4,13.1 & Appendix F

What's a memory leak?

e -
- ":fg"-??' e =

- AT N
A gt ?___{:'R_\‘_;“_._
e

iy
=,

oy AR
AN

: I P . !
__ulr.-.l—'l-"-ﬁf g - L
l\llu.
}'?hu-‘ .
il e
- "
s .
I . e
— e
| I i "
' - | ; v .
i
- L me

Review: constructors

Constructors are special functions that have
I the same name as the class

Use a constructor to create an instance of the
class (i.e. an object of the blueprint)

// all three the same

string a = string();
string b() ;
string c =

Constructors + dynamic

What if we have a variable inside a class

that uses dynamic memory? ... simple{

simple: :simple() public:

{ int* xArray;
XArray = new int[3]; simple();

} 1

When do we stop using this class?
What do we do if the int* was private?

(See: classMemoryLeak.cpp)

Constructors + dynamic

Often, we might want a class to retain its
I information until the instance is deleted
while(true)
This means either: { |
1. Variable's scope ends -eaky 0ops;
(automatically deleted) } o
2. You manually delete a dynamically
created class with the delete command

Destructors

Just as a constructor must run when a class
IS created...

A destructor will always run when a class
object/instance/variable is deleted

Destructors (like constructors) must have

the same name as the class, but with a ~:

pu b.l-ic : constructor
Unleaky () ; 4«

~Unleaky () ; <= destrucior

(See: classMemoryLeakFixed.cpp)

I Destructors
A good analogy is file I/0, as there are 3 steps:

I 1. Open the file (read or write)
2. Use the file
3. Close the file

The constructor is basically requiring step 1
to happen

Do you want #3 to be automatic or explicit?

Destructors

The benefit of destructors is the computer
will run them for you when a variable ends

This means you do not need to explicitly
tell it when to delete the dynamic memory,
simply how it should be done

This fits better with classes as a blueprint
that is used in other parts of the program
(see: destructor.cpp)

	Slide 1
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

