
Pointers
Ch 9 & 13.1

Highlights

- pointers

object vs memory address

An object is simply a box in memory and if
you pass this into a function it makes a copy

A memory address is where a box is located
and if you pass this into a function, you can
change the variable everywhere

Memory address Object (box)
arrays int, double, char, ...
using & classes

(pointers)

Review: address vs value

Consider the following:

x is a variable (a box containing value 6)

&x is a memory address (sign pointing to box)
- Rather than giving the value inside the

box, this gives the whole box
(see: memAddress.cpp)

Review: address vs value

Similar to a URL and a webpage
-A URL is not a webpage, but a link to one

Webpage g;
cout << &g;

Pointers

Just as & goes from value (webpage) to
address (url), * goes the opposite:

Webpage g;
URL u = &g;
Webpage g2 = *u;

*u &g

Pointers

You can also think of pointers as “phone
numbers” and what they point to as “people”

1-800-presdnt
(pointer)

Trump
(object)

Pointers

If multiple people have the same “phone
number”, they call the same person (object)

1-800-presdnt
(pointer/
memory address)

Trump
(object)

1-800-presdnt

Pointers

A pointer is used to store a memory address
and denoted by a * (star!)

Here variable “xp” has type “integer pointer”

The * goes from address to variable (e.g.
like hitting ENTER on a url, or “call” on a
phone contact) (See: pointerBasics.cpp)

Pointers (phone analogy)

Make a phone-number for an person (int)

Make a contact name
called “jacky”

Make a person (int) “Jacqueline Wu” exist

Save Jacqueline Wu's phone number
into the “jacky” contact

(& = address of)

* = call up
Call the “jacky” contact (and
connect with Jacqueline Wu)

Pointers

It is useful to think of pointers as types:

Here I declared a variable “xp” of type “int*”

Just like arrays and [], the use of the * is
different for the declaration than elsewhere:

Declaration: the * is part of the type ()
Everywhere else: * follows the pointer/address

(i.e. puts 2 where xp is pointing to)

Pointers

Pointers and references allow you to change
anything into a memory address that you want

This can make it easier to share variables
across functions

You can also return a pointer from a function
(return links to variables)
(see: returnPointer.cpp)

Pointers

Why do we need pointers? (memory addresses
are stupid!!!)

Suppose we had the following class:

Will this work?

Pointers

As is, it will not... it is impossible to make a
box enclose two other equal sized boxes

The only way it can enclose something like
itself is that thing is smaller

Pointers

To do this we can use pointers instead!

A pointer does not store the whole class data,
it only remembers where it is (like a URL)

(See: person.cpp) (more on this shortly)

->

When dealing with classes, often you need to
deference (*) and access a member (.)

There is a shortcut to de-reference and call
a member (follow arrow and go inside a box)

You can replace (*var).x with var->x, so...

... same as ...

Person class

How would you make your grandmother?
How could you get your grandmother using
only yourself as a named object?

(See: personV2.cpp)

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

