
Welcome to CSci 1113

Introduction to C/C++ Programming
for Scientists and Engineers

James Parker
Shepherd Laboratories 391

Instructor (me)

Primary contact:
jparker@cs.umn.edu

TAs

Karthik Unnikrishnan, Prashanth Venkatesh,
Jackson Benning, Yanjun Cui, Mitchell Dillon,
Skye Gagnon, Jacob Hammer, Samuel Highbargin,
Lin Huynh, Shane Jung, Jin Hong Kuan, Jan-Wei Lim,
Haoran Liu, Ying Lu, Sophia Manicor,
Andrew McCullough, Adam McCune, Kyle Meng,
Brandon Nee, Tanner Skluzacek, Antonio Turley,
Ruobing Wang, Kaiwei Wu, Yuyang Xiao, Songyu Yan,
Lei Zhang, Xintong Zhang

mailto:jparker@cs.umn.edu

Questions?

Direct questions to:
Canvas forum discussion
jparker@cs.umn.edu

Problem Solving
With C++,
Walter Savitch,
10th edition

Textbook

mailto:jparker@cs.umn.edu

Sister course: CSci 1115

This course is an “introduction” (from start),
but many find it difficult

We started to run a supplementary course
to provide additional help: CSci 1115(Th 6pm)

Sister course: CSci 1115

This course is an “introduction” (from start),
but many find it difficult

We started to run a supplementary course
to provide additional help: CSci 1115(Th 6pm)

Sister course: CSci 1115

This course is an “introduction” (from start),
but many find it difficult

We started to run a supplementary course
to provide additional help: CSci 1115(Th 6pm)

MeDaniel

Sister course: CSci 1115

This course is an “introduction” (from start),
but many find it difficult

We started to run a supplementary course
to provide additional help: CSci 1115(Th 6pm)

-group problem solving

Sister course: CSci 1115

This course is an “introduction” (from start),
but many find it difficult

We started to run a supplementary course
to provide additional help: CSci 1115(Th 6pm)

-group problem solving
-free food!

CSELabs account

You need a CSELabs account to
participate in labs in this course

Lab attendance is mandatory
(please make an account!)

https://cseit.umn.edu/

https://cseit.umn.edu/

https://cseit.umn.edu/

https://cseit.umn.edu/

https://cseit.umn.edu/

CSELabs account

CSELabs account used in lab
(first lab ensures account working)

Register ASAP

Problems?
Bug operator@cselabs.umn.edu

Class website

Syllabus, schedule, other goodies

Canvas page will have grades and
(maybe) homework submissions

www.cs.umn.edu/academics/classes
Or google “umn.edu csci class”

Class website

Canvas also has a link to the website:

www.cs.umn.edu

http://www.cs.umn.edu/academics/classes

15% Labs
30% Homework (due Fridays)
 5% Quiz (Feb. 18)
10% Midterm 1 (March 3)
15% Midterm 2 (April 14)
25% Final (May 12, 6:30-8:30pm)

Syllabus

Each week there will be either a
homework due or a test

Homework is due Fridays at
11:55 P.M. (more details to come)

Late homework is not accepted,
but we will drop the lowest one

Syllabus

Syllabus

Labs can be checked off up until a
week after the lab (warm-up
questions must be in your lab)

Homework must be done by yourself

Don't cheat
Really... don't cheat

Homework

Homework will be both a creative
and problem solving endeavor:

Lego example
Build a castle with:
-4 walls enclosing
-Door
-At least one tower (higher than wall)

Homework

Exams

All exams will be open book/notes
Electronic notes okay
(no memorization)

You cannot:
1. Use the internet (no typing)
2. Compile/run programs
3. Talk to or copy from others

Grading scale:
93% A
90% A-
87% B+
83% B
80% B-

Syllabus

77% C+
73% C
70% C-
67% D+
60% D
Below F

Ch. 1: Introduction, Programs, Compilers
Ch. 2: Input/Output, Data, Expressions
Ch. 3: Control Flow (if and loops)
Ch. 4, 5: Functions (return values)
Ch. 6: File I/O
Ch. 7, 8: Arrays and Strings
Ch. 9: Pointers and Dynamic Arrays
Ch. 10&11: Classes and Operator Overloading
Ch. 14&15: Recursion & Inheritence

Schedule

Syllabus

Any questions?

What can I program?

If you can think of an explicit
process (of simple steps) to solve
your problem, then it can be
programed.

Banana Nut Bread

Directions
1. Preheat the oven to 350°F (175°C).
2. Mix butter into the mashed bananas

in a large mixing bowl.
3. Mix in the sugar, egg, and vanilla.
4. Sprinkle the baking soda and salt over

the mixture and mix in.
5. Add the flour and nuts last, mix.
6. Pour mixture into a buttered 4x8 inch loaf pan.
7. Bake for 1 hour. Cool on a rack.

Repetitive tasks

ATMs

How do you get change for
$18.26 with the least amount
of bills and coins?

Repetitive tasks

If you feel like a mindless zombie
when you do it a lot, you can
probably program it.

Repetitive tasks

Repetitive tasks

Auto leveling?

Software vs Hardware

Software - the more intangible
code on a computer

Hardware - the physical
Parts of the computer

Hardware interaction

Input

CPU

Memory

Output

Memory addressing

Data is stored in “addresses” inside
the memory

Later in this class, we will use these
addresses to manipulate and share
data

Memory addressing

Object oriented programming

OOP - focus on data and how they
interact

To make algorithms for OOP, it is
often useful to identify the data
you are working with and their
relationships before programming

Object oriented programming

Data for...

Banana nut bread?
ATM?
Ball game?

Object oriented programming

Data for...

Banana nut bread? Ingredients
ATM?
Ball game?

Object oriented programming

Data for...

Banana nut bread? Ingredients
ATM? Dollars & coins
Ball game?

Object oriented programming

Data for...

Banana nut bread? Ingredients
ATM? Dollars & coins
Ball game? Balls & mouse

Object oriented programming

Data for...

Banana nut bread? Ingredients
ATM? Dollars & coins
Ball game? Balls & mouse

Lots of pixels (tiny color dots)

Break time!

Object Oriented

Main focus is on objects and how they interact
(represented by me as boxes)

Reusable groups of actions (verbs) between
objects are called functions (squiggly boxes)

These actions can take additional information
called arguments,
(an analogy is ordering at a restaurant; the
ordering format is the same, different food)

Object Oriented

Example:

The dot (period) shows that “teaching”
is an action done by “James”

One format is:
object.function(argument, argument...);

James.teaches(CSci 1113);
teach(James, CSci 1113);

Banana Nut Bread

Ingredients
 * 3 or 4 ripe bananas, smashed
 * 1/3 cup melted butter
 * 1 cup sugar
 * 1 egg, beaten
 * 1 teaspoon vanilla
 * 1 teaspoon baking soda
 * Pinch of salt
 * 1 1/2 cups of all-purpose flour
 * 1 cup of nuts

Data
(Objects)

Banana Nut Bread

Directions
1. Preheat the oven to 350°F (175°C).
2. Mix butter into the mashed bananas

in a large mixing bowl.
3. Mix in the sugar, egg, and vanilla.
4. Sprinkle the baking soda and salt over

the mixture and mix in.
5. Add the flour and nuts last, mix.
6. Pour mixture into a buttered 4x8 inch loaf pan.
7. Bake for 1 hour. Cool on a rack.

Banana Nut Bread

Directions
1. Preheat the oven to 350°F (175°C).
2. Mix butter into the mashed bananas

in a large mixing bowl.
3. Mix in the sugar, egg, and vanilla.
4. Sprinkle the baking soda and salt over

the mixture and mix in.
5. Add the flour and nuts last, mix.
6. Pour mixture into a buttered 4x8 inch loaf pan.
7. Bake for 1 hour. Cool on a rack.

Banana Nut Bread

Directions
1. Preheat the oven to 350°F (175°C).
2. Mix butter into the mashed bananas

in a large mixing bowl.
3. Mix in the sugar, egg, and vanilla.
4. Sprinkle the baking soda and salt over

the mixture and mix in.
5. Add the flour and nuts last, mix.
6. Pour mixture into a buttered 4x8 inch loaf pan.
7. Bake for 1 hour. Cool on a rack.

Banana Nut Bread

Pseudo code directions
1. oven.preheat(350);
2. bowl.mix(butter, bananas);
3. bowl.mix(sugar, egg, vanilla);
4. bowl.sprinkle(baking soda, salt);
5. bowl.mix(flour, nuts);
6. bowl.pour(pan);
7. pan.bake(60);
8. pan.cool();

Banana Nut Bread

Pseudo code directions #2
1. oven.preheat(350);
2. bowl.add(butter, bananas);
3. bowl.mix();
4. bowl.add(sugar, egg, vanilla);
5. bowl.mix();
6. bowl.sprinkle(baking soda, salt);
7. bowl.add(flour, nuts);
8. bowl.mix();
9. pan.pour(bowl);
10. pan.bake(60);
11. pan.cool();

Banana Nut Bread

mashedBananas = bananas.mashed();
bowl.add(butter, mashedBananas);

same as:
bowl.add(butter, bananas.mashed());

Kitchen.bowl.add(butter, bananas.mashed());

hand.mix(butter, mashedBananas);
bowl.add(hand.mix(butter, mashedBananas));

Compiling

Hi
0101

Converting code to binary is
called compiling

Compiling

Hi
0101

0101

Often this compiled code
Will not work on other
computers

Compiling

Compiling

C++ is a high level language
(human readable)

Compiling changes a high level
language into a low level language
that is easier for the computer
(computer cannot run high level)

Compiling

You must recompile the source code
every time you save a change
before running the program again

Your source code is the original
language you wrote your program
in (the C++ code for us)

Compiling tl;dr

cook

directions

meal

eat

satiated

code

compile

1's and 0's
(program)

run
pretty colors

Compiling

In labs, the computers will come with a
program called “geany” (which I will use too)

This program is where you can write code
and easily compile simple programs

To run it either click the terminal icon ()
on the left bar or press Ctrl+Alt+T

Then type: geany (enter)

High level (C++)

#include <iostream>
using namespace std;

int main ()
{
 cout << "Hello World! ";
 return 0;
}

(See: helloWorld.cpp)

Low level (Assembly)

MODEL SMALL
IDEAL
STACK 100H

DATASEG
MSG DB 'Hello, World!', 13, '$'

CODESEG
Start:
MOV AX, @data
MOV DS, AX
MOV DX, OFFSET MSG
MOV AH, 09H ; output ascii string
INT 21H
MOV AX, 4C00H
INT 21H
END Start

Ease of use

Why C++?

Speed

Control

Libraries

Speed

Not all programming languages need to
compile code as C++ (Java, Python)

Compiling can greatly increase speed
of a program

Control

C++ allows you great control over your data
(and its interpretation)

This comes with a burden of responsibility
to properly manage your data

If you mismanage your data, you are likely
to cause an error in your program

Libraries

C++ is an old language (older than me) and
this comes with pros and cons...

Some aspects are quirky to enable backwards
compatibility (and are honestly out of date)

Since it has been around for a long time, there
are lots of supporting libraries
(and the language continues to develop...)

Java vs C++

C++Java

Fast
Fine tunedGoes anywhere

Comfy

Magic 8 ball

Magic 8 ball

What a rip off!

Magic 8 ball

Keyboard input

cout << “word”
 - prints “word” to the screen

cin >> x
 - store what is typed into “x”
 (x is some object or data)

Can also do arithmetic using +, -, / and *
(See: inputOutput.cpp)

Types of errors

Syntax error - code will not compile
e.g. cout(“hi”);

Runtime error - code crashes after starting
(see: runtimeError.cpp)

Logic error - code runs but doesn't return
the correct answer
(see: logicError.cpp)

Syntax

Syntax is a fancy word for the “grammar” of
programming languages

The basic English syntax is:
(subject) (verb) (noun)
“I eat bananas” not “Bananas I eat”

The computer is VERY picky (and stubborn)
about grammar, and will not understand you
unless you are absolutely correct!

Avoid errors

To remove your program of bugs,
you should try to test your program on
a wide range of inputs

Typically it is useful to start with a small
piece of code that works and build up
rather than trying to program everything
and then debug for hours

Comments

Comments are ignored pieces of code
(computer will pretend they do not exist)

// denotes a single line that is commented
// (everything before hitting enter)

/* denotes the beginning of a comment
and the end of a comment is denoted by */

Additional facts

Braces denote a block of code { }
(belonging to a method, class, etc.)

“White space” is ignored, just as the your
brain will ignore the bottom third of this slide
(this is why we need a semi-colon)

	Slide 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	OOP
	Slide 53
	banana nut
	Slide 55
	Slide 56
	banana nut bread
	Slide 58
	Slide 59
	Slide 60
	portability
	Slide 62
	Slide 63
	compiling
	Slide 65
	Slide 66
	Slide 67
	java code
	assembly
	ease of use
	java lacks
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	8 ball
	Slide 78
	Slide 79
	errors
	Slide 81
	Slide 82
	Slide 83
	Slide 84

