CSci 1113
Lab Exercise 11 (Week 12): Pointers and Dynamic Memory

The explicit memory management capability of C/C++ is one reason that the language remains popular nearly
half a century after its creation. Using dynamic memory requires an understanding of indirection: the idea of
manipulating a variable (pointer variable) that refers to another variable. We say that the pointer variable
points to the dynamically created memory. In this lab exercise we begin our exploration of dynamic memory
management.

Warm-up

Complete the following paper/pencil exercises. First, work on them individually. Then you and your partner
should discuss your answers and make any needed corrections. Then both of you should discuss your results
with one of your TAs:

1) Pointer basics
a) Declare two (type double) pointer variables named d _var and d array:

b) Write C++ statements to dynamically create a double-precision floating-point variable and store its address
ind var. Also dynamically create an array of 10 double-precision floating-point values and store its
addressind_array:

c¢) Write C++ statements to input a value for d_var (i.e., a value that d_var points to) from the console and
then display it:

d) Write C++ statements to initialize the 10 double values in the dynamically allocated array to 1.0 :

e) Now write C++ statements to de-allocate the memory (i.e. using the delete operator) pointed by d_var
andd_array:

2) Pointer management
a) Show the output of the following code segment:

int a(l);

int b(2);

int *pl, *p2;

pl = &a;

p2 = &b;

*pl = *p2;

*p2 = 10;

cout << *pl << ' ' << b << ' ' << a << endl;

b) Describe the problem with this function:

void foo ()
{ int *array = new int[100];
for(int 1 = 0; i < 100; i++)
{
//do something
}



3) Pointers with classes

a) A user-defined class named Timer has a constructor that takes two integer parameters to initialize hour
and minute data members. Write a single C++ statement to create an object of the Timer class using
dynamic memory allocation and assign it to a pointer variable named t imePtr. It should call the constructor
with two parameters. Use values of 10 and 20 for hour and minute respectively.

b) Write the definition for a function named randArray that takes a single integer argument, n, and
returns a dynamically allocated array of n pseudo-random integers. You may assume the pseudo-random
number generator has been previously declared and seeded. (i.e. you do not need srand(time(0)) or an
include.)

¢) Now write C++ statements to call the randArray function to construct a 100 element array, then print
the array values to the display (one per line) and delete the dynamically allocated array.

Stretch

1) Momentum

Momentum is defined as the product of an item’s mass and its velocity. Mass is a scalar value, whereas
velocity is generally expressed as a vector quantity with three components. The product of the scalar mass
and the velocity yields momentum as a vector quantity.

Write a function named momentum that will accept as arguments a (i) one-dimensional velocity array with
three values (type double) (i.e. a 3d vector) and (ii) a mass (type double), and return a dynamically
allocated array representing the momentum. Note the momentum is determined by multiplying the scalar
mass by each element of the vector array.

Test your momentum function by constructing a short ma in program that will ask the user to input values
for the velocity and mass from the console, and then display the momentum.

Workout

1) Arrays of Dynamic Items

Write a program to determine the average momentum of a collection of items with random velocities and
masses. Do this using the following outline:

1. Construct a function named randVec that will take no arguments and return a dynamically allocated
3-element array of doubles. Each element in the array should be a randomly generated value in the
range -100.0 through +100.0.

2. Using randVec and your momentum function from the previous part, generate momentum vectors
for 1000 items, each of which has a random velocity (as described above) and a randomly generated
mass in the range 1.0 through 10.0. Save the momentum vectors using a suitable array of pointers.

3. Determine and display the average momentum vector of the items using a for loop. [Hint: the average
should be done component by component. ]

2) Letter Frequency

Write a function that will take a string and return a count of each letter in the string. For example, "my dog
ate my homework" contains 3 m's, 3 0's, 2 €'s, 2 y's and one each of d, g, a, t, h, w, r and k.
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Your function should take a single string argument and return a dynamically allocated array of 26 integers
representing the count of each of the letters a . . z respectively. Your function should be case insensitive, i.e.,
count 'A' and 'a' as the occurrence of the letter a. [Hint: use the letter to integer conversion functions.] Do
not count non-letter characters (i.e., spaces, punctuation, digits, etc.)

Write a program that will solicit a string from the user using get1ine, call your letter frequency function
and print out the frequency of each letter in the string. Do not list letters that do not occur at least once.

Example:

Enter a string: my dog at my homework
Letter frequency

a 1
d 1
e 1
g 1
h 1
k 1
m 3
o 3
r 1
t 1
w 1
y 2

Challenge

1) Buffering

Real-world data from measuring devices or sensors is generally produced asynchronously relative to the
processing routine(s). The data may appear in bursts that occur faster than can be individually processed. An
effective way to handle this situation is to employ a buffer. A buffer is simply an array into which a data-
generating process writes data, and from which a separate data-processing routine subsequently retrieves it.
In the short-term, if the data is being generated at a faster rate than can be processed, the buffer fills while the
processing routine catches up. In the long-term (assuming the average processing rate exceeds the average
generation rate), the data processing will be able to remain ahead of or keep pace with the generating process.

There are a number of ways to implement buffering. One simple way is to employ a double-buffering
technique in which a generating process fills one buffer, then provides the address of the filled buffer to the
processing routine and allocates a new buffer to begin filling. The processing routine extracts the data from
the filled buffer and disposes the buffer when finished, then awaits the next "filled" buffer.

In this problem, we'll simulate a basic double-buffering scheme using dynamically allocated arrays of
integers. You will need to construct a data generation function and a data processing function and then
randomly call them from a simulation loop in the main program.

1) Construct a function: double getProb () that will return a pseudo-random value between 0.0 and 1.0.
2) Construct a function: int* generateData (int* &inbuf, int &count) that will simulate

asynchronous data generation by obtaining a random number between 0 and 9 (you do not need to use
getProb() for this) and saving it in an input buffer. Your function should do the following:
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« Generate a random integer between 0 and 9 and add it to the buffer at the array location specified by
the count argument. (Note the buffer is passed as a pointer variable reference.)

« Increase the count.

« If'the buffer is full: a) return the address of the full buffer, b) reset the count to zero, ¢) allocate a new
buffer and d) save its address in the pointer variable passed as the first argument.

« If'the buffer is not full, then return NULL.

3) Construct a function: void processData (int* soutbuf, int &count, int &total) to
simulate "processing" of the asynchronous data. Do the following:
« If the output buffer pointer is NULL, do nothing, i.e., just return.
« Otherwise: obtain the buffer value at [count] and add it to total, then increase the count.
« Ifall elements in the buffer have been exhausted, then reset the count to zero, delete the (dynamically
allocated) buffer and set the buffer pointer argument to NULL.

4) Finally, include the following code in a main simulation program that will call the generateData and
ProcessData functions in a loop.

const int BUFSIZE=10;
const int ITERATIONS=50;

int main ()
{ 1int *fillbuffer = new 1int[BUFSIZE];
int fillcnt=0;
int *processbuffer = NULL;
int processcnt=0;
int tcount = 0;

for (int i=0; i<ITERATIONS; i++)
{ int *temp;
if (getProb () <= 0.40 )
{ temp = generateData(fillbuffer,fillcnt);
if( temp != NULL )
processbuffer = temp;
}
if (getProb () <= 0.60)
processData (processbuffer,processcnt, tcount) ;
cout << fillcnt << '\t' << processcnt << endl;

cout << "Total value: " << tcount << endl;
return 0;



