
CSci 1113
Lab Exercise 10 (Week 11): Operator Overloading

Operator Overloading

Operator "overloading" is one way in which C++ supports the object-oriented principle of ad hoc
polymorphism. Polymorphism is derived from the Greek words "poly" ("many") and "morph" ("form"). Ad
hoc polymorphism refers to the notion that the actual operation performed for any operator is entirely
dependent on the form (type) of its operands. For example, the division operator / results in different
operations for floating-point operands vs. integer operands.

Operator overloading is useful when constructing complex classes. At a minimum, most user-defined classes
should include overloaded stream input and output operators (>> and <<) to support debugging and file I/O.
In this lab exercise, we continue to develop our understanding of class construction by extending the work
from the previous lab by including overloaded operators.

Warm-up
Complete the following paper/pencil exercises. First, do these individually. Then you and your partner should
share your answers and make any needed corrections, making sure you both understand the solutions. Then
you both should discuss your answers with one of your TA.

1) Consider the following class declaration:
class Point
{ public:
 Point();
 Point(int xval, int yval);
 friend Point operator +(Point, Point);
 private:
 int xloc;
 int yloc;

} ;

a. Write the function definition for the overloaded + operator that will produce the sum of the x values
and the sum of the y values of two Point objects.

b. Rewrite the Point class interface to make the overloaded + operator a public member function of the
class.

c. Provide the function definition for the overloaded + member operator of the Point class.

d. Describe what the overloaded output operator (e.g., <<) return-type must be and why.
(Hint: consider how the following statement is evaluated:
 cin >> some_object >> some_other_object;

e. In order to overload the output operator for a class we make it a non-member friend function of the
class and not a member function. Explain why.

f. Overload the output operator for the point class to output a point object as follows:

x,y

 where x and y are the coordinate values for the point, separated by a comma.

1

Stretch

1) Complex Number Class
Extend the Complex class that you completed in last week's Lab Exercises. Recall that a complex number is
of the form a + bi where a and b are real numbers and i2 = -1. For example, 2.4 + 5.2i and 5.73 - 6.9i are
complex numbers. a is referred to as the real part of the complex number and bi the imaginary part.

Make the following changes to the Complex class definition:

a) Add a constructor that will take two double arguments and initialize the real and imaginary
components respectively.

b) Replace the input and output methods with overloaded >> and << operators, respectively, that are
friend functions of the class. The output should be realValue + imaginaryValue i e.g., :

9.3 + 5.7i 12.4 - 8.4i

If the imaginaryValue component is zero, simply output the realValue as a 'regular' floating-point
value. Also, if the imaginaryValue is negative, replace the '+' symbol with '-'. You may input the
complex value in any format you wish.

c) Provide an overloaded addition operator that will return the sum of two Complex objects. For
complex numbers a + bi and c + di, addition is defined as

(a+c) + (b+d)i.

4) Provide an overloaded negation operator (unary -) that will negate both the real and imaginary parts
of a complex number. For example if z is the complex number 3 - 2i, then -z should return a complex
number -3 + 2i.

Thoroughly test your Complex number class by writing a test program that constructs various Complex
values and displays the results until you are convinced that it is operating correctly. Include the following
statements in your test program and show the results to a TA:

Complex c1,c2,c3;
cout << "Enter two complex values: ";
cin >> c1 >> c2;
c3 = c1+c2;
cout << "The sum is: " << c3 << endl;
cout << "and negating the sum yields: " << -c3 << endl;

2

Workout

1) Quadratic Polynomials
Write a program that will output the sum of two quadratic polynomials. Your program must do the following:

1. Define an abstract data type, Poly with three private data members a, b and c (type double) to
represent the coefficients of a quadratic polynomial in the form: ax2 + bx + c

2. Include a constructor in the Poly class to initialize all private data members with caller-supplied
values (in addition to the default constructor!)

3. Overload the addition operator to return the sum of two Poly objects.

4. Overload the << (output) operator to output Poly objects in the following format, e.g.,:

ax^2 + bx + c

Where a, b and c are the coefficients of the Poly object. Do not display the a or b terms if they
have zero coefficients. Moreover, if any coefficient is negative it should be precede by a minus sign,
and not a plus sign.

5. In your main() function, declare and initialize two Poly objects, q1 and q2, to represent the
following polynomials: 3x2 + 4x – 2 and -4x + 10 . Also declare a third, un-initialized Poly object
named sum.

6. Output the sum of the two polynomials to the console using the following C++ code exactly as it
appears:

sum = q1 + q2;
cout << q1 << " : q1\n";
cout << q2 << " : q2\n";
cout << sum << " : q1+q2\n";

2) More Polynomial Methods
Extend the Poly class to support the evaluation of quadratic polynomials as follows:

1. Add a member function named eval that takes a single double argument representing the 'x' value
and returns the result (type double) of evaluating the polynomial at x.

2. Add a void member function named roots that will take two reference arguments of type
Complex (use your Complex class), then compute and provide both roots of a quadratic
polynomial object. Recall that the roots are given by the quadratic equation:

The expression under the radical is referred to as the discriminant. If the discriminant is negative, the
roots must be expressed as imaginary values using Complex numbers as follows:

The roots method should first determine if the roots are real or imaginary based on the value of the
discriminant. If the roots are real, return them as complex values with the imaginary component set
to zero, if the roots are imaginary, return them in complex form using the absolute value of the
discriminant.

3

3. Overload the >> (input) operator to input a Poly object in the following format:

(a,b,c)

Where a, b and c are the data values of the poly object. The input will include the parentheses and
commas as shown.

Now, write a main program that will evaluate the quadratic polynomial 2x2 - 6x + 5 at the integer values 0
through 10. Include the following C++ code:

Poly inpoly;
cout << "Input a quadratic polynomial: ";
cin >> inpoly;
for(int i=0; i<= 10; i++)
 cout << "f(" << i << ") is: "
 << inpoly.eval(i) << endl;
Complex c1,c2;
inpoly.roots(c1,c2);
cout << "The roots of f(x) are "
 << c1 << "\t" << c2 << endl;

Check

Individually write down (a) one important thing you learned from this lab exercise, and (b) one question you
still have. Then you and your partner should share and discuss what you both have written.

Challenge

1) Polynomial Evaluation
The current Poly::eval method takes a floating-point value for x and returns f (x) as a double. Provide an
overloaded Poly::eval method that will take a complex number as its argument and return a complex
result.

To do this, you will need to add overloaded operators to your Complex class to support multiplication and
subtraction. If this is done properly, the code for the floating-point Poly::eval method should be usable
with very little (if any) modification.

2) Further Overloaded Operators

Add the following additional operators to your Complex number class:
• If you wrote your overloaded + operator as a friend function, write it as a non-member, non-friend

function. (Hint: you will need to use accessor member functions in writing this.)
• Write an overloaded == operator that checks if two complex number objects have the same real and

imaginary values.
• Write an overloaded += operator as a member function of the class. The statement c1 += c2 should

add c1 and c2 together and store the result in c1.

4

