
CSci 1113
Lab Exercise 4 (Week 5): Write Your Own Functions

User Defined Functions
In previous labs, you've encountered useful functions, such as sqrt() and pow(), that were created by 
other people and reside in a library.  A function is simply a self-contained computational process to which 
we've assigned a name (label).  This allows us to "invoke" it at any time during the execution of our program 
by providing the name in a function call. 

Recall a computational process is a series of steps that direct a (mindless) machine to manipulate data and 
produce a desired result.  We generally think of a computational process as a mapping from a set of input data
to some set of output data:

input  process  output

Certain computational processes perform tasks that we want to repeat frequently, such as "compute the square
root of some number", or "raise some number to some power".  These are, in their own right, computational 
processes that take input (a number or numbers) and produce output (square root of the value, power).

By simply naming a process, we create a powerful and useful abstraction.  For example, we might assign the 
name sqrt to the process "compute the square root of some number".  Now, instead of re-typing all the 
steps that define this process each time we need it, we simply invoke the process by providing it's name: 
sqrt.  This is the idea of procedural abstraction.  A procedural abstraction is simply a means of giving 
some detailed process a name and then subsequently forgetting about all the details (which we really didn't 
care about anyway!)  When we use abstractions in our program, the computer takes care of invoking the 
necessary steps for us, freeing us to think and develop programs at a much higher level. A huge advantage of 
using procedural abstractions is that we can leverage a large body of programming solutions that other people 
have already created. We simply get to use them.  

A function call consists of giving the name of the function followed by parentheses.  Some (but not all) 
functions such as sqrt require input values, or arguments.  For example, sqrt requires the value for which
it is supposed to compute the square root.  When a function requires input values, the argument (or 
arguments) are provided inside the parentheses and separated by commas.

Most of our programming from now on will involve writing our own C++ functions and using them in our 
programs. In this lab we begin our exploration of procedural abstraction.

Mystery-Box Challenge
Here is this week’s mystery-box challenge.  Determine the output of the following C++ code fragment when 
the function f1 is called, and then describe it to one of your Lab TAs : 

void f1( void ) {
    int x = 5;
    f2(x);
    cout << x << endl;
}

void f2( int x ) {
    x += 5;
    cout << x << endl;
}
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Reminders
If you like using the terminal window to compile/run, here are reminders about three time-saving tips from 
previous labs:

1. Tab autocompletion: Remember that, in Linux, you can type part of a command or name and the 
operating system will complete as much as it can of it.

2. Up arrow to recall past commands: Remember that, at the Linux prompt, hitting the up-arrow key 
once will produce the last command, and hitting the up-arrow repeatedly will produce the commands 
before that, in reverse order.

3. Editing window/compile and run window: Remember that when you develop and test programs you 
can have two windows open simultaneously. In the editing window you can type in, modify, and save 
your program. Then in the second window you can compile, run, and test your program. This will 
help you efficiently repeat the create/modify – save – compile – run – test development cycle.

Also, one debugging tip: you can print out intermediate values in your program by inserting one or more print
(i.e., cout) statements at key points in your program. For example, suppose you have a loop that is 
supposed to be computing a sum, but after the loop your program is always reporting an incorrect sum. You 
can insert a print statement within the loop to print out the sum each time through the loop. This will often 
give you insight into what isn’t working correctly. Of course, remember that once you have corrected all the 
errors in your program you should remove all these extra print statements.

If you do not remember or understand any of these tips, ask your partner. If you both do not understand the 
tips, ask one of the TAs.

Warm-up
1)  Square Root, Revisited
Modify the program you wrote for last week's Stretch Exercise (1) so that it has the Babylonian algorithm as a
user-defined square-root function.  Start by defining a function named babylonianRoot, that takes a 
single floating-point argument and returns the square root estimate using the code you completed in your 
earlier solution. 

double babylonianRoot(double n);

You’ll need to modify your previous code slightly, e.g., it should return the last guess for the square root, but 
should not use  >> or << to get any input or write any output within in your function!

Your main program should take in as input a floating-point value (i.e. double), then call the 
babylonianRoot function to determine and display the square root of the input value.  Include a 
continuation loop that will continue this process as long as the user wishes.

Before actually writing the code, you and your partner should individually make a list of what specifically 
needs to be changed to turn your previous code into a user-defined function. Then compare lists and make the 
changes.

Examples:
enter a value: 4
square root of 4 is 2
continue? (y/n): y

enter a value: 25
square root of 25 is 5
continue? (y/n): n
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2)  Leap Year

Leap years contain one additional day (February 29) in order to keep the calendar synchronized with the sun 
(because the earth revolves around the sun closer to once every 365.25 days).  A year is a leap year if it is 
divisible by 4, unless it is a century (evenly divisible by 100) that is not divisible by 400. Note that 2015 is not
a leap year, 1980 was a leap year, 2000 was a leap year, 1900 was not a leap year.

Write a program that contains a user-defined function named isLeapYear, that takes a year value as an 
integer argument and returns true if the year is a leap year, false otherwise. Do not use the >> or << 
operations in your function!:

bool isLeapYear(int year);

Your main program should input a year value (integer), then call the isLeapYear function and display 
whether or not the year is a leap year.  Include a continuation loop that will continue this process as long as 
the user wishes.

Examples:
enter a year value: 2015
2015 is not a leap year
continue? (y/n): y

enter a year value: 2000
2000 is a leap year
continue? (y/n): y

enter a year value: 1900
1900 is not a leap year
continue? (y/n): n

Stretch
1)  Fun with Dates

Extend the program you created in Warm-up Exercise (2) to include a second user-defined function named 
last_day. This function should take two integer arguments representing the month and year, and return the 
number of days in the month represented by the arguments.  Do not use the >> or << operators in your 
function!:

int last_day(int month, int year);

The month argument should be between 1 and 12.  If it is not, return the value 0.  Recall that February has a 
variable number of days depending on the year!  Modify the main program to input both the month and year 
and output the number of days in the month.  Include a continuation loop that will continue this process as 
long as the user wishes.

Examples:
enter month and year: 2 2015
days in month: 28
continue? (y/n): y

enter month and year: 2 2000
days in month: 29
continue? (y/n): y
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enter month and year: 12 2014
days in month: 31
continue? (y/n): n

2).  What is Tomorrow's Date?

Extend your main program from Stretch Exercise (1) to accomplish the following:
• Input the month, day, and year values as 3 separate integers.
• Determine and output the date for the next calendar day (use the last_day function as needed).
• Include a continuation loop that will continue this process as long as the user wishes.

Examples:
enter a date as mm dd yyyy: 2 28 2015
next day is: 3 1 2015
continue? (y/n): y

enter a date as mm dd yyyy: 2 28 2000
next day is: 2 29 2000
continue? (y/n): y

enter a date as mm dd yyyy: 2 28 1900
next day is: 3 1 1900
continue? (y/n): y

enter a date as mm dd yyyy: 12 31 2014
next day is: 1 1 2015
continue? (y/n): n

Workout

1) Newton-Raphson
The problem of computing the square root of any number is a specific case of the more general root-finding 
problem.  Root-finding occurs in many places in computer science, as well as in other science and 
engineering problems. Recall that the roots (or zeros) of any function are the parametric value(s) for which 
the function produces a zero result:

x : f (x) = 0

   Finding the square root of some number K is equivalent to finding the principal zero of

f (x) = x2 – K

We could just as easily compute the cube root of K in the same fashion by solving:  

x3 – N = 0

and so on.  Generalizing, we can find the nth root of any value K by solving:
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xn – K = 0

The Newton-Raphson algorithm is an efficient and ingenious method for finding the principal root of any 
continuously differentiable function.  The method is ascribed to Sir Isaac Newton, although Joseph Raphson 
was the first to publish it in a more refined form.  The method is a generalized version of the Babylonian 
"guess and check" approach that you explored in a previous lab.  

The method generalizes the Babylonian approach by employing the derivative of the function.  Given an old 
guess, xi, the new ("better") guess, xi+1 is computed by:

Note that the Babylonian Algorithm is simply the specific case of Newton-Raphson for f (x) = x2 – K.

For the generalized nth root problem, f (x) is:

xn – K

and the derivative, f '(x) is:

nxn-1

Substituting these formulas, the Newton-Raphson update rule for computing the nth root of any value K is:

Write a program that includes a user-defined function named rootN that will calculate and return the nth root
of any value using the Newton-Raphson method described above:

double rootN(double x, int n);

The function takes two arguments: a (type double) value > 0 and an integer  root > 1.  This function should 
work exactly as your Babylonian square root, but using the more generalized update rule.  Do not use any 
math library functions in your solution.  [Hint:  it will be very helpful if you also construct a separate 
function to compute xn ]

Your main program should take as input positive values for K and n, then call the rootN function to 
determine and display the nth root of the input value.  Include a continuation loop that will continue this 
process as long as the user wishes.

Examples:
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enter value and root: 9 2
the root is: 3.00002
continue? (y/n): y

enter value and root: 9 3
the root is: 2.08008
continue? (y/n): y

enter value and root: 9 4
the root is: 1.73207
continue? (y/n): n

Check
You and your partner should individually list (i) one important thing you learned from today’s lab, and (ii) one
question you still have about any of the lab material. When you have listed these, share your list with each 
other.

Challenge
Here are two challenge problems.  The first is fairly simple; the second is longer and complicated, but is a 
nice application of some of the previous material. If you  complete the warm-up, stretch and workout 
problems before the end of lab, then work on at least one of these challenge problems in the remaining time.

1)  Greatest Common Divisor
The greatest common divisor (GCD) of two integers a and b is the largest positive integer that divides both a 
and b.  The Euclidean algorithm for finding this greatest common divisor of a  and b is as follows. Assume 
neither number is 0, and let a  be the larger number in absolute value.

• Divide a by b to obtain the integer quotient q and remainder r such that a = bq + r. 

• It is known that GCD(a,b) = GCD(b,r), so replace a with b and then b with r, and repeat all the steps 
until the remainder is 0.

Since the remainders are decreasing, eventually a 0 remainder will result.  The last nonzero remainder is the 
greatest common divisor of a and b, i.e., GCD(a,b).  For example, 

1260 = 198 x 6 + 72 GCD(1260,198) = GCD(198,72)
 198 = 72 x 2 + 54 GCD(198,72)  = GCD(72,54)
  72 = 54 x 1 + 18 GCD(72,54)  = GCD(54,18)
  54 = 18 x 3 + 0 GCD(54,18)  = 18

So the GCD of the original two numbers, namely 1260 and 198, is 18. 

Write a program that includes a user-defined function named GCD that will calculate and return the greatest 
common divisor of two integer arguments. Do not use the >> or << operations in your function!:

int GCD(int a, int b);

Your main program should read two integers from the console, call GCD to calculate the greatest common 
divisor, and display the results on the terminal display. Include a continuation loop that will continue this 
process as long as the user wishes.  

Notes: (i) If either of the GCD function arguments is negative, replace it with its absolute value.  (ii) above,  a 
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represents the larger of the two values (in absolute value). However, do not assume that a will always be the 
first argument. Rather, since the larger value could be either of the two input arguments to the GCD function; 
your function must check the arguments values, and assign a the larger of the two arguments (in absolute 
value), and b the smaller (again, in absolute value). (iii) The GCD of two numbers plays an important role in a
number of  real world areas, such as certain types of encryption (see the RSA Encryption problem below).

Examples:
enter two integer values: 1 17
greatest common divisor is: 1
continue? (y/n): y

enter two integer values: 9 15
greatest common divisor is: 3
continue? (y/n): n

2)  RSA Encryption
One place the greatest common divisor is used is in encryption schemes. RSA encryption is one common 
encryption scheme. It uses the following steps:

1. If I want you to send me an encrypted message, I take any two relatively large prime numbers p and q
(we’ll use 11 and 17 for this example, although the primes actually used are much larger) and 
multiply them together to get n = pq: 187

2. I next take any number e with the property that gcd(e, (p − 1)(q − 1)) = 1. 
(e.g., e = 3 works since gcd(3, (11 − 1) ∗ (17 − 1)) = 1.)

3. I send you e and n.

4. To send me an encrypted message you take your message, assign numerical equivalents to each 
character, and then encrypt these numerical equivalents by C = ae mod n. You then send the results.  
(The real algorithm actually takes groups of letters, rather than single letters at a time; however, we 
are asking you to simplify this by encoding each letter separately.)

Example:
              S   T   O   P
        19  20  15  16
          193 mod 187 = 127
          203 mod 187 = 146
          153 mod 187 = 9
          163 mod 187 = 169

Write two functions: 

     1. A function check_epq that, given e and prime numbers p, and q, checks whether
gcd(e, (p − 1)(q − 1)) = 1.   (You can assume p and q are prime here.) Hint: use your gcd function from 

the previous problem.

    2. A function char_to_number that takes in an upper case alphabetic character, and returns an integer 
that is the position of the character in the alphabet. For example char_to_number (’A’) should 

7



return 1, char_to_number(’B’) should return 2, etc.

Once you get all these functions written, write a main program that does the following: it first asks the user to 
input e, p, and q. It then uses your check_epq function to check that e, p, and q obey the gcd condition. If 
they do not, the program should print out an error message and terminate. If they do, the program should ask 
the user to input four upper case alphabetic characters, change each to an integer using your 
char_to_number function, encode each using the following encode function, and print out the result.

Here is the encode function:

int encode(int a, int e, int n)
{
  return (static_cast<int>(pow(static_cast<double>(a), e)) % n);
}

Example 1:
  Input e, p, and q : 5 11 17
  GCD of e and (p-1)*(q-1) is not 1

Example 2:
  Input e, p, and q : 3 11 17
  Input four upper case letters : S T O P
  The encoding of STOP is 127 146 9 169

Example 3:
  Input e, p, and q : 3 11 17
  Input four upper case letters : S N O W
  The encoding of SNOW is 127 126 9 12

Example 4:
  Input e, p, and q : 5 19 23
  Please input four upper case letters : S K I S
  The encoding of SKIS is 57 235 54 57

Note that this program will only work with small values of e, p, and q. (What happens if
you try to encode “STOP” with e, p, and q being 11, 19, and 31, respectively? Why?)
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