
CSci 1113
Lab Exercise 2 (Week 3): Sequence and Selection

Sequence refers to the idea that any computational process follows a specific order of
execution. For example, in C++ each statement is completed prior to beginning any
other statement, and operators within statements have an execution order based on op-
erator precedence. Selection describes the alteration of the sequence based on dynamic
conditions.

In this exercise you will continue to build your understanding of simple C++ programs,
including those that modify processing based on simple dynamic selection. As usual, work
in pairs, take advantage of all the help around you, and be sure to explore on your own.

Note: save the programs your and your partner write for the lab. They might be useful
when you do the first individual homework assignment. Each problem solution should be
maintained in its own (separate) source file. Moreover, both you and your partner should
each have a copy of the programs in your individual accounts. Remember that, unlike the
labs, the homework problems are to be done individually. You may reuse any code you
and your partner wrote in lab, but if you do so the homework modifications you make
should be done on your own, rather than collaboratively.

Warm-Up
(1) Special Relativity
In special relativity, an object that has length L centimeters when at rest with respect to
the observer has a relativistic length, LR centimeters, given by :

when traveling at velocity v away from the observer. Here c is the speed of light, approximately
3 × 1010 cm/sec. The √ is a square root symbol.

Write a program that will calculate and display the relativistic length LR of an object of
rest length L traveling at velocity v. In your program:
• Use object type double for L, v, c, and L R .
• Initialize c to 3 × 1010 cm/sec.
• Have the user input values for L and v.
• Include the file cmath so you can use the sqrt() function.

Test your program using L = 32.5 cm and v = 2.2 × 1010 cm/sec as one of your test cases.
When you enter the value of v use e (scientific) notation (like “2.2e10” or see Section 2.3 of the
textbook). Also test your program with L = 42.0 cm and v = 3.2 × 1010 cm/sec (again, enter v using
scientific notation). What happens?

Stretch
(1) Basal Metabolic Rate (from the Savitch Ch 2 Programming Projects)
The Harris-Benedict equation estimates the number of calories your body needs to main-
tain your weight if you do no exercise whatsoever. This is called your basal metabolic
rate, or BMR (note this is a single variable name, not three variables multiplied together).
The formula for the calories needed for a woman to maintain her weight is :

BMR = 655 + (4.3 × weight in pounds) + (4.7 × height in inches) − (4.7 × age in years).

The formula for the calories needed for a man to maintain his weight is :

BMR = 66 + (6.3 × weight in pounds) + (12.9 × height in inches) − (6.8 × age in years).

A typical chocolate bar contains approximately 230 calories. Write a program that allows
the user to input his or her weight in pounds, height in inches, age in years, and the
character ‘M’ for male or ‘F’ for female. The program should then output the number of
230 calorie chocolate bars that need to be consumed to maintain one’s weight for a person
of the input sex, height, weight, and age.

Testing Discussion: You are your partner should separately come up with 3 sets of test
data for this program. When both of you have made up your test cases, discuss with your
partner why you chose the test cases you did, and, more generally, what makes good test
cases for a program like this.

(2) Temperature Conversion
For weather reporting, the daily temperature will generally be given in degrees Celsius or
Fahrenheit. Write a C++ program that will convert a temperature given in one system of
units to the other. For example, if the temperature is given in degrees Fahrenheit convert
it to Celsius, and vice versa.

Your program should prompt the user to provide a temperature value (object type double)
and a single character (‘f’ or ‘c’) to indicate if the value is in degrees Fahrenheit or Celsius.
Read in the temperature and scale values, then compute and display the corresponding
equivalent temperature in the other scale system. Your output message should indicate
whether the result is Celsius or Fahrenheit. For example:

Example 1 (underlined values are user inputs):
Enter the temperature: 26.6
Enter Celsius (c) or Fahrenheit (f): c
The temperature in Fahrenheit is 79.88

Example 2 (underlined values are user inputs):
Enter the temperature: 93.2
Enter Celsius (c) or Fahrenheit (f): f
The temperature in Celsius is 34

Use the following conversion formulas:
F = C × (9/5) + 32
C = (F − 32) × (5/9)

[Hint: remember there is a difference between division of integers and division of doubles.
Be careful when translating the equations above into C++.]

Test your program using the following values, as well as some other test cases you and
your partner think up:
(i) convert 37 degrees Celsius to Fahrenheit;
(ii) convert 98.6 Fahrenheit to Celsius;
(iii) convert 32 Fahrenheit to Celsius;
(iv) convert -40 Fahrenheit to Celsius.

(3) Simple Integer Calculator
Write a simple integer calculator. This should be able to handle +, -, / (integer
division), and *. The user should input in the format: [integer][operator][integer]. For
example: 2+56 or 5*3 (if you do it right, the code should work whether or not there are spaces before
or after the operators). Make your program not crash as long as the input is in this
format. Your program should only compute one number then stop. You should display both what the
user entered and the numeric result.

Example 1 (underlined values are user inputs):
Enter an equation: 7+1
7+1 = 8

Example 2 (underlined values are user inputs):
Enter an equation: 8 / 3
8/3 = 2

Workout
(1) Payroll (from a Savitch Chapter 2 programming project)
An employee is paid at the rate of $16.78 per hour for the first 40 hours worked in a week.
Any hours over that are paid at the overtime rate of one-and-one-half times that. From
the worker’s total pay, 6% is withheld for Social Security tax, 14% is withheld for federal
income tax, 5% is withheld for state income tax, and $10 per week is withheld for union
dues. If the worker has three or more dependents, then an additional $35 is withheld to
cover the extra cost of health insurance beyond what the employer pays. Your task is to
write a program that will read in the number of hours worked in a week and the number
of dependents as input, and will then output the worker’s total pay, each withholding
amount, and the net take-home pay for the week. Solve this problem in four steps:

(i) Problem solving discussion: Both you and your partner should work on it first
individually (using a pencil and paper — don’t start typing yet) for three minutes.
This will not be enough time to solve the problem, but will be enough for you to

check if you understand the problem, and to get started on solving it. After three
minutes, compare the problem solving approach you are using with your partner’s
approach. Are they similar or different?

(ii) Outline: You and your partner should collaboratively come up with a detailed out-
line of the problem. Don’t use C++ yet. Instead use an English-like description
(pseudocode) to outline all the steps the program will need to do, in the order it
will need to do them.

(iii) Code: Once you have the outline written, (collaboratively) turn it into a C++
program.

(iv) Test and revise: Make up test cases, test your program, correct it as needed, and
continue testing and revising until your program is correct.

Check and Discussion
Before going on to the challenge question you and your partner should individually write down
(i) one important thing you learned in the lab so far, and
(ii) one question you still have about the C++ you used in the lab today. When you have both written
down answers, share them with each other.

Before going on to the challenge questions, have a TA check your work.

Challenge
These problems are for those of you who just can’t get enough! You should be able to
complete the warm-up, stretch, and workout problems in the lab. Try this problem if you
have extra time or would like additional practice outside of lab.

Challenge problems are worth 0.25 extra credit. So you do the warm-up, stretch and workout problems
for this lab you will have 5/5 (1 warm-up, 3 stretch, 1 workout). If you do the challenge as well, you
will have 5.5/5 for this lab (110%).

(1) Ancient Greek Taxation
Suppose that in ancient Greece, where the unit of currency was the drachma, the following
income tax code was used:

first 10,000 drachmas: 0% tax
next 20,000 drachmas: 10% tax
next 40,000 drachmas: 20% tax
drachmas after 70,000: 30% tax

For example, someone earning 100,000 drachmas would owe :
10, 000 × 0.0 + 20, 000 × 0.1 + 40, 000 × 0.2 + 30, 000 × 0.3 = 19, 000 drachmas.

Write a program reads in an income value in drachmas, and outputs the amount of tax.

(2) Selection Problem from Your Major
Think up a simple problem, from your major field, whose computer solution involves

selection. Both you and your partner should think up separate problems. When you
have each thought up a problem, share them and, if time permits, chose one and write a
program that implements its solution.

Logout
Remember to logout of the computer before you leave.

