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Weakness in manually DBMS tuning

Dependencies between different knobs
Changing of performance is irregular
Configurations depend on specific platform
Tuning Complexity

-> how to tune DBMS automatically?



OtterTune: an automatic tuning system
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OtterTune: an automatic tuning system
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Workload characterization

e To discover a model that could

e Use DBMS’s internal runtime metrics to
characterize workload.

* Cons:
— Accurate
— Could be directly affected by knobs’ settings



Workload characterization

» Save as K/V pairs in its repository

* Limitation: only consider global knobs



Workload characterization

in order to
reduce the search space of ML algorithms

High Factor Analysis Low
dimensional dimensional

Clustered
meaningful
groups

DBMS DBMS
metric data metric data




Workload characterization

in order to reduce the search
space of ML algorithms

* The one closet to cluster center as the representation of all
metrics in this cluster
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Figure 4: Metric Clustering — Grouping DBMS metrics using k-means
based on how similar they are to each other as identified by Factor Analysis
and plotted by their (f1, f2) coordinates. The color of each metric shows
its cluster membership. The triangles represent the cluster centers.



ldentify important knobs

* |dentify which knobs have the strongest
impact on the target objective function.

* Use Lasso, a
, to expose the knobs that
have strongest correlation to the system’s
overall performance.



ldentify important knobs
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X: DBMS’s knobs
Y: metrics collected during observation period

Use to determine the order
of importance of the DBMS knobs (Appendix A)



Automated tuning

* Find a workload in its repository which is most similar with
the target DBMS’s workload

* For each metric, build a matrix from the data in repository

S[num_of _metrics][num_of workload][configuration]
S[m][1i][j] == The value of metric m observed when executing
workload 1 with configuration j

 Workload mapping: by calculating Euclidean
distance(ED[m][i]) between the vector of measurements
for target workload and each S[m]|[i]

e Score of workload i = Average(ED[m]][i] for each m), and
select the workload with minimum score
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Automated tuning

* Use Gaussian Process regression

* Find the best configuration in each observation period by
choosing the strategy with the greatest expected improvement

— (1) exploration: searching an unknown region in its GP(workloads with
little to no data)

— (2) exploration: selecting a configuration that is near the best
configuration in its GP



Experimental evaluation

* OLTP workloads:
— DBMS: MySQL, Postgres
— Workloads: YCSB, TPC-C, Wikipedia
— 5-minute observation periods
— Target metric : 99%-tile latency
 OLAP workloads:
— DBMS: Active Vector
— Workloads: TPC-H
— Variable-length(total exec time) observation periods
— Target metric : total exec time of the workload



Experimental evaluation

e Workloads: Permutations of YCSB and TPC-H

* Knobs configurations: random values within
valid range

e Execute over 30k experiments on each DBMS
with different workload and knob
configurations.



Experimental evaluation

* To prove that OtterTune can identify the

appropriate number of knobs to be tuned.
(balance between DBMS performance and
tuning complexity)

e 2 settings: fixed number of knobs && increase
the number of knobs gradually
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Experimental evaluation
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A: MySQL + TPC-C
— Incremental method is the best

— Larger number of knobs have little
improvement

B: Postgres + TPC-C
— Incremental method and 4 knobs are the best

— Incremental method allows exploring and
optimizing the configuration space for a small
set of the most impactful knobs, before

expanding its scope to consider the others
C: Vector + TPC-H

— Incremental method, 8 knobs, and 16 knobs
are the best

Incremental method is the best approach
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Experimental evaluation

 Compare with another tool “iTuned”

e OtterTune: trains its GP models using the data from the
most similar workload mixed with the data determined in
the last workload mapping stage. Use incremental method.

* jTuned: does not train its GP models using data collected
from previous tuning sessions (The initial configuration is
generated by a stochastic sampling technique). It start use
incremental knob only after running initial set of
experiments.
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Experimental evaluation
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Experimental evaluation

Workload Execution: The time that it takes for the DBMS to execute the
workload in order to collect new metric data.

Prep & Reload Config: The time that OtterTune’s controller takes to install
the next configuration and prepare the DBMS for the next observation
period (e.g., restarting if necessary).

Workload Mapping: The time that it takes for OtterTune’s dynamic
mapping scheme to identify the most similar workload for the current
target from its repository. This corresponds to Step #1 from Sect. 6.1.

Config Generation: The time that OtterTune’s tuning manager takes to

compute the next configuration for the target DBMS. This includes the

gradient descent search and the GP model computation. This is Step #2
from Sect. 6.2.



Experimental evaluation
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Experimental evaluation
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Future Work

Hardware capabilities
Turning component-specific knobs

Max num of log files in Sec7.6 (optimize
several metrics simultaneously)

Online training without the type of workload
specified



