
Automatic	Database	Management	
System	Tuning	Through	Large-scale	

Machine	Learning
Dana	Van	Aken
Andrew	Pavlo

Geoffrey	J.	Gordon
Bohan Zhang

1



Weakness	in	manually	DBMS	tuning

• Dependencies	between	different	knobs
• Changing	of	performance	is	irregular
• Configurations	depend	on	specific	platform
• Tuning	Complexity

• ->	how	to	tune	DBMS	automatically?

2



OtterTune:	an	automatic	tuning	system

3



OtterTune:	an	automatic	tuning	system

4



Workload	characterization

• To	discover	a	model	that	could	identify	which	
previously	seen	workloads	in	the	repository	are	
similar	to	target	workload.

• Use	DBMS’s	internal	runtime	metrics	to	
characterize	workload.

• Cons:
– Accurate
– Could	be	directly	affected	by	knobs’	settings

5



Workload	characterization

• 1.	Collect	DMBS	runtime	statistics

• Save	as	K/V	pairs	in	its	repository

• Limitation:	only	consider	global	knobs

6



Workload	characterization

• 2.	Remove	redundant	metrics	in	order	to	
reduce	the	search	space	of	ML	algorithms

High	
dimensional	

DBMS	
metric	data

Factor	Analysis Low	
dimensional	

DBMS	
metric	data

K-means Clustered	
meaningful	
groups

7



Workload	characterization

• 2.	Remove	redundant	metrics	in	order	to	reduce	the	search	
space	of	ML	algorithms

• The	one	closet	to	cluster	center	as	the	representation	of	all	
metrics	in	this	cluster

8



Identify	important	knobs

• Identify	which	knobs	have	the	strongest	
impact	on	the	target	objective	function.

• Use	Lasso,	a	feature	selection	technique	for	
linear	regression,	to	expose	the	knobs	that	
have	strongest	correlation	to	the	system’s	
overall	performance.

9



Identify	important	knobs

• Feature	selection	with	Lasso:	a	Linear	regression	
method

• Cost	function:	
• X:	DBMS’s	knobs
• Y:	metrics	collected	during	observation	period

• Use	Lasso	Path	Algorithm	to	determine	the	order	
of	importance	of	the	DBMS	knobs	(Appendix	A)

10



Automated	tuning
• STEP1	Workload	Mapping
• Find	a	workload	in	its	repository	which	is	most	similar	with	

the	target	DBMS’s	workload
• For	each	metric,	build	a	matrix	from	the	data	in	repository

• Workload	mapping:	by	calculating	Euclidean	
distance(ED[m][i])	between	the	vector	of	measurements	
for	target	workload and	each	S[m][i]

• Score	of	workload	i	=	Average(ED[m][i]	for	each	m),	and	
select	the	workload	with	minimum	score

S[num_of_metrics][num_of_workload][configuration]
S[m][i][j] == The value of metric m observed when executing 
workload i with configuration j

11



Automated	tuning
• STEP2	Configuration	recommendation
• Use	Gaussian	Process	regression

• Find	the	best	configuration	in	each	observation	period	by	
choosing	the	strategy	with	the	greatest	expected	improvement

– (1) exploration: searching	an	unknown	region	in	its	GP(workloads	with	
little	to	no	data)	

– (2) exploration:	selecting	a	configuration	that	is	near	the	best	
configuration	in	its	GP

12



Experimental	evaluation
• 1.	Platform
• OLTP	workloads:
– DBMS:	MySQL,	Postgres
– Workloads:	YCSB,	TPC-C,	Wikipedia
– 5-minute	observation	periods
– Target	metric	:	99%-tile	latency

• OLAP	workloads:
– DBMS:	Active	Vector
– Workloads:	TPC-H
– Variable-length(total	exec	time)	observation	periods
– Target	metric	:	total	exec	time	of	the	workload

13



Experimental	evaluation

• 2.	Generate	initial	training	data	in	repository
• Workloads:	Permutations	of	YCSB	and	TPC-H
• Knobs	configurations:	random	values	within	
valid	range

• Execute	over	30k	experiments	on	each	DBMS	
with	different	workload	and	knob	
configurations.	

14



Experimental	evaluation

• 3.	Analysis	of	OtterTune when	optimizing	
different	numbers	of	knobs

• To	prove	that	OtterTune can	identify	the	
appropriate	number	of	knobs	to	be	tuned.	
(balance	between	DBMS	performance	and	
tuning	complexity)

• 2	settings:	fixed	number	of	knobs	&&	increase	
the	number	of	knobs	gradually

15



Experimental	evaluation
• 3.	Analysis	of	OtterTune when	optimizing	

different	numbers	of	knobs
• A:	MySQL	+	TPC-C

– Incremental	method	is	the	best
– Larger	number	of	knobs	have	little	

improvement
• B:	Postgres +	TPC-C

– Incremental	method	and	4	knobs	are	the	best
– Incremental	method	allows	exploring	and	

optimizing	the	configuration	space	for	a	small	
set	of	the	most	impactful	knobs,	before	
expanding	its	scope	to	consider	the	others

• C:	Vector	+	TPC-H
– Incremental	method,	8	knobs,	and	16	knobs	

are	the	best
• Incremental	method	is	the	best	approach

16



Experimental	evaluation
• 4.	Show	how	learning	from	data	in	repository(previous	

tuning	sessions)	improve	OtterTune’s ability	to	find	a	good	
knob	configuration

• Compare	with	another	tool	“iTuned”
• OtterTune:	trains	its	GP	models	using	the	data	from	the	

most	similar	workload	mixed	with	the	data	determined	in	
the	last	workload	mapping	stage.	Use	incremental	method.

• iTuned:	does	not	train	its	GP	models	using	data	collected	
from	previous	tuning	sessions	(The	initial	configuration	is	
generated	by	a	stochastic	sampling	technique).	It	start	use	
incremental	knob	only	after	running	initial	set	of	
experiments.

17



Experimental	evaluation
• 4.	Show	how	learning	from	

data	in	repository(previous	
tuning	sessions)	improve	
OtterTune’s ability	to	find	a	
good	knob	configuration

• A:	TPC-C
– OtterTune find	better	

configuration	in	less	time
– Trained	GP	model	in	

OtterTune have	a	better	
understanding	of	the	
configuration	space

• B:	Wikipedia
– OtterTune achieved	lower	

latency.
• C:	TPC-H

– OtterTune achieved	lower	
latency

18



Experimental	evaluation
• 5.	Analysis	the	amount	of	time	that	OtterTune spends	in	the	different	

parts	of	its	tuning	algorithm

• Workload	Execution:	The	time	that	it	takes	for	the	DBMS	to	execute	the	
workload	in	order	to	collect	new	metric	data.

• Prep	&	Reload	Config:	The	time	that	OtterTune’s controller	takes	to	install	
the	next	configuration	and	prepare	the	DBMS	for	the	next	observation	
period	(e.g.,	restarting	if	necessary).

• Workload	Mapping:	The	time	that	it	takes	for	OtterTune’s dynamic	
mapping	scheme	to	identify	the	most	similar	workload	for	the	current	
target	from	its	repository.	This	corresponds	to	Step	#1	from	Sect.	6.1.

• Config Generation:	The	time	that	OtterTune’s tuning	manager	takes	to	
compute	the	next	configuration	for	the	target	DBMS.	This	includes	the	
gradient	descent	search	and	the	GP	model	computation.	This	is	Step	#2	
from	Sect.	6.2.

19



Experimental	evaluation

• 5.	Analysis	the	amount	of	
time	that	OtterTune spends	
in	the	different	parts	of	its	
tuning	algorithm

20



Experimental	evaluation

• 6.	Compare	the	
configuration	
generated	by	
OtterTune with	the	
one	provided	by	
human	DBA,	open-
source	tuning	
advisor	tools,	and	
cloud	DBaaS
provider(Amazon	
RDS).

21



Future	Work

• Hardware	capabilities
• Turning	component-specific	knobs
• Max	num of	log	files	in	Sec7.6	(optimize	
several	metrics	simultaneously)

• Online	training	without	the	type	of	workload	
specified

22


