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Malware Detection in Android
● 1.6 million apps in Google Play Store in July 2015

○ Many more in third-party websites
● Malware Rates - Attacked devices surged 75% from 2013-2014
● Easy to publish apps in android.. 1 in 5 are malware
● Existing malware tools detect only widely known malwares
● Innovative ways in infecting devices 

○ Third party developer stolen keys
○ Zero day exploits to get root access 
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Countermeasures

● Existing countermeasures
○ Signature-based - Once Android markets find a potential malicious app, they will record its 

signature of the corresponding app for a more in-depth detection later.
○ Behaviour-based - prior work is mostly in Static Analysis

● Behaviour-based - StormDroid

○ Static Analysis - identifies suspicious traces of data to detect known threats
○ Dynamic analysis - Observes actual execution but leads to excessive consumption of OS



Machine Learning for Malware Detection

● Machine Learning helps sift through large sets of applications for malware 
detection

● Shortcomings of existing techniques in Machine Learning:

○ Features are restricted to Permissions & Sensitive API calls
○ Lack of large-scale data sets for training
○ Validation measures don’t fare well in reality - 10-fold cross validation
○ Unreasonable amount of time taken while processing a large-scale dataset



Background - Android Manifest



Compiling APK 
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Security Approaches
● Market Protection

○ Signing
○ Review by playstore

● Platform Protection

○ Sandboxing - VM for each app
○ Permissions - either a benign or a malicious app may require the same permissions 

■ New versions have dangerous permissions which aren’t granted during installation time



StormDroid Framework



StormDroid
Three phases in execution:

● Preamble - reverse engineering to get resource files
● Feature extraction - extraction of features from combined set of contributed 

features and creation of binary input vector
● Classification - ML models for classification of an app as benign or malicious



Framework cntd..
Work flow of the detection process is in following topology: 

● Submitted app is first disassembled to extract its features
○ static profiling tools: apktool, dex2jar, java decompilation tool

● Differential metrics of the app are calculated
● Run intersection analysis and output a binary input vector
● All the data associated with the app are in a single stream 
● Concurrently processes multiple streams

○ enables a market to efficiently detect a large number of submissions.



Classification
● Training performed on 3000 apps
● Total app samples - 7970 apk files

○ 4350 benign apps
○ 3620 malicious apps - includes phishing, trojans, spyware, root exploits



Feature Extraction
● Features

○ Well received features
■ Permissions
■ Sensitive API Calls - obtain Smali files from the static decompiling

● Telephony
● SMS/MMS
● Network/Data

○ Newly-defined features
■ Sequence
■ Dynamic Behaviour



Feature extraction contd..
Permission settings & Sensitive API calls are indeed relevant to the benign or 
malware behaviors



Feature extraction - Sequences
● Subtraction-Differential metric: D1 (resp. D2 ) as the set of top values of 

d(s,m,b) (resp. d(s,b,m) ) that outnumber the threshold 200

➔ D=D1∪D2
● Logarithm-differential metric: top 16 values that are greater than 0.4 (set 

L1) and the bottom 11 values of that are less than 0.05 (set L2)

➔ L=L1∪L2



Feature Extraction - Sequences
● Subtraction-Logarithm metric 

➔S = D∩L
➔if the APK contains at least one of the features either in set D1∩L1 or in 

set D2∩L2 , 
◆ Add weights +(d(s,m,b)/1,516) or −(d(s,b,m)/1516) to sum, respectively;
➔if the (sum value of the set S) > 0.4, the corresponding sequence is 

heuristically marked as ‘1’ otherwise, it is marked as ‘0’





Feature extraction - Dynamic Behaviour
● Apk file is run in DroidBox 6 

○ Incoming/outgoing network data
○ File read and write operations
○ Started services and loaded classes through DexClassLoader
○ Information leaks via the network, file and SMS
○ Circumvented permissions
○ Cryptography operations performed using Android API
○ Sent SMS and phone calls
○ two images showing the temporal order of the operations and a treemap to check similarity 

between analyzed packages.

● Static analysis of the saved log files to extract the top features of dynamic 
behaviors. 



Feature extraction contd..
Several well-known features do not help distinguish between benign and malicious 
apps, which will increase system overhead. They choose 1,516 benign and 
malicious APKs to prune well-known features of benign and malicious apps in all 
categories.



Results



Evaluation
Randomly 1000 malicious apps are chosen for comparison

❏ As per the authors, this helps understand coverage and avoid over-fitting



Scalability
● StormDroid outperforms single thread by approximately three times in each 

group 



Thoughts

● Evolving malware requires evolving malware detectors
○ Recent malware samples should be collected constantly to evolve the model
○ Attacks against learning techniques

■ Malwares can incorporate benign features to affect detection scores
■ Frequent retraining on representative datasets can mitigate such attacks

● Decompilation to source code is more difficult than to smali files
○ Repackaging doesn’t affect StormDroid
○ But even standard code obfuscation techniques makes reverse engineering very difficult.        

It impairs the StormDroid Framework
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