
StormDroid: A streaminglized Machine
Learning-Based System for Detecting

Android Malware

Sen Chen,
Minhui Xue,

Zhushou Tang,
Lihua Xu,

Haojin Zhu

Malware Detection in Android
● 1.6 million apps in Google Play Store in July 2015

○ Many more in third-party websites
● Malware Rates - Attacked devices surged 75% from 2013-2014
● Easy to publish apps in android.. 1 in 5 are malware
● Existing malware tools detect only widely known malwares
● Innovative ways in infecting devices

○ Third party developer stolen keys
○ Zero day exploits to get root access

Presenter
Presentation Notes
Many more apps are not enlisted in Google play store

Countermeasures

● Existing countermeasures
○ Signature-based - Once Android markets find a potential malicious app, they will record its

signature of the corresponding app for a more in-depth detection later.
○ Behaviour-based - prior work is mostly in Static Analysis

● Behaviour-based - StormDroid

○ Static Analysis - identifies suspicious traces of data to detect known threats
○ Dynamic analysis - Observes actual execution but leads to excessive consumption of OS

Machine Learning for Malware Detection

● Machine Learning helps sift through large sets of applications for malware
detection

● Shortcomings of existing techniques in Machine Learning:

○ Features are restricted to Permissions & Sensitive API calls
○ Lack of large-scale data sets for training
○ Validation measures don’t fare well in reality - 10-fold cross validation
○ Unreasonable amount of time taken while processing a large-scale dataset

Background - Android Manifest

Compiling APK

Presenter
Presentation Notes
Android programs (apps) are compiled into .dex (dex =Dalvik Executable) files. Android devices run a virtual machine called Dalvik. The compiled Java code of Android is called dex (“Dalvik Executable”). It’s one file that contains the entire compiled code. That file is known in the Android realm as “classes.dex”.A dex file is a dalvik executable file which is an optimised class file that runs on the dalvik virtual machine. An app is compiled into a class file and then it is optimised to a dex file because of this, the size of the dex file is always limited in size than the class file.

Security Approaches
● Market Protection

○ Signing
○ Review by playstore

● Platform Protection

○ Sandboxing - VM for each app
○ Permissions - either a benign or a malicious app may require the same permissions

■ New versions have dangerous permissions which aren’t granted during installation time

StormDroid Framework

StormDroid
Three phases in execution:

● Preamble - reverse engineering to get resource files
● Feature extraction - extraction of features from combined set of contributed

features and creation of binary input vector
● Classification - ML models for classification of an app as benign or malicious

Framework cntd..
Work flow of the detection process is in following topology:

● Submitted app is first disassembled to extract its features
○ static profiling tools: apktool, dex2jar, java decompilation tool

● Differential metrics of the app are calculated
● Run intersection analysis and output a binary input vector
● All the data associated with the app are in a single stream
● Concurrently processes multiple streams

○ enables a market to efficiently detect a large number of submissions.

Classification
● Training performed on 3000 apps
● Total app samples - 7970 apk files

○ 4350 benign apps
○ 3620 malicious apps - includes phishing, trojans, spyware, root exploits

Feature Extraction
● Features

○ Well received features
■ Permissions
■ Sensitive API Calls - obtain Smali files from the static decompiling

● Telephony
● SMS/MMS
● Network/Data

○ Newly-defined features
■ Sequence
■ Dynamic Behaviour

Feature extraction contd..
Permission settings & Sensitive API calls are indeed relevant to the benign or
malware behaviors

Feature extraction - Sequences
● Subtraction-Differential metric: D1 (resp. D2) as the set of top values of

d(s,m,b) (resp. d(s,b,m)) that outnumber the threshold 200

➔ D=D1∪D2
● Logarithm-differential metric: top 16 values that are greater than 0.4 (set

L1) and the bottom 11 values of that are less than 0.05 (set L2)

➔ L=L1∪L2

Feature Extraction - Sequences
● Subtraction-Logarithm metric

➔S = D∩L
➔if the APK contains at least one of the features either in set D1∩L1 or in

set D2∩L2 ,
◆ Add weights +(d(s,m,b)/1,516) or −(d(s,b,m)/1516) to sum, respectively;
➔if the (sum value of the set S) > 0.4, the corresponding sequence is

heuristically marked as ‘1’ otherwise, it is marked as ‘0’

Feature extraction - Dynamic Behaviour
● Apk file is run in DroidBox 6

○ Incoming/outgoing network data
○ File read and write operations
○ Started services and loaded classes through DexClassLoader
○ Information leaks via the network, file and SMS
○ Circumvented permissions
○ Cryptography operations performed using Android API
○ Sent SMS and phone calls
○ two images showing the temporal order of the operations and a treemap to check similarity

between analyzed packages.

● Static analysis of the saved log files to extract the top features of dynamic
behaviors.

Feature extraction contd..
Several well-known features do not help distinguish between benign and malicious
apps, which will increase system overhead. They choose 1,516 benign and
malicious APKs to prune well-known features of benign and malicious apps in all
categories.

Results

Evaluation
Randomly 1000 malicious apps are chosen for comparison

❏ As per the authors, this helps understand coverage and avoid over-fitting

Scalability
● StormDroid outperforms single thread by approximately three times in each

group

Thoughts

● Evolving malware requires evolving malware detectors
○ Recent malware samples should be collected constantly to evolve the model
○ Attacks against learning techniques

■ Malwares can incorporate benign features to affect detection scores
■ Frequent retraining on representative datasets can mitigate such attacks

● Decompilation to source code is more difficult than to smali files
○ Repackaging doesn’t affect StormDroid
○ But even standard code obfuscation techniques makes reverse engineering very difficult.

It impairs the StormDroid Framework

	StormDroid: A streaminglized Machine Learning-Based System for Detecting Android Malware
	Malware Detection in Android
	Countermeasures
	Machine Learning for Malware Detection
	Background - Android Manifest
	Slide Number 6
	Security Approaches
	StormDroid Framework
	StormDroid
	Framework cntd..
	Classification
	Feature Extraction
	Feature extraction contd..
	Feature extraction - Sequences
	Feature Extraction - Sequences
	Slide Number 16
	Feature extraction - Dynamic Behaviour
	Feature extraction contd..
	Results
	Evaluation
	Scalability
	Thoughts

