StormDroid: A streaminglized Machine
Learning-Based System for Detecting
Android Malware

Sen Chen,
Minhui Xue,
Zhushou Tang,
Lihua Xu,
Haojin Zhu

Malware Detection in Android

e 1.6 million apps in Google Play Store in July 2015

o Many more in third-party websites
Malware Rates - Attacked devices surged 75% from 2013-2014
Easy to publish apps in android.. 1 in 5 are malware
Existing malware tools detect only widely known malwares

Innovative ways in infecting devices

o Third party developer stolen keys
o Zero day exploits to get root access

Presenter
Presentation Notes
Many more apps are not enlisted in Google play store

Countermeasures

e Existing countermeasures

o Signature-based - Once Android markets find a potential malicious app, they will record its
signature of the corresponding app for a more in-depth detection later.
o Behaviour-based - prior work is mostly in Static Analysis

e Behaviour-based - StormDroid

o Static Analysis - identifies suspicious traces of data to detect known threats
o Dynamic analysis - Observes actual execution but leads to excessive consumption of OS

Machine Learning for Malware Detection

e Machine Learning helps sift through large sets of applications for malware
detection

e Shortcomings of existing techniques in Machine Learning:

Features are restricted to Permissions & Sensitive API calls

Lack of large-scale data sets for training

Validation measures don’t fare well in reality - 10-fold cross validation
Unreasonable amount of time taken while processing a large-scale dataset

o O O O

Background - Android Manifest

<?xml wersion="1.0" encoding="nutf-8" 2>
<manifest xplns:android="http: //schemas.android.com/apk/res/android"
package="com.example . valdiovelin. myapplication™ > <l—— the application package ——>

e

The list of =
<uses-—peermission roid:rname="android.permission. INTERNET " > /fuses —p-ermission
d

amnd
<uses—-permission androi name="android.permission.A0CESS FINE LOCATION"></uses-permission>

<application
android:al lowBackEup="trus"
android: icon="Emipmap/ic launcher"
android: label="My Application™
android: theme="E2sty le/ AppThems" >
<activity
android:name=" . Mainfctiwvity"™
android: lab=l=—"My Application™ >
<intent-filter>
<action android:mame="android.imntent.action.MATH™ />

<category android:rname="android.intent.category . LATODHNCHER"™ />
< /imtent-filter>
< JSactivity>
< Sapplications

</manifest>

Compiling APK

Byte
code —

.class

Java

Byte code

Other .class files

dx

classes.dex

AndroidManifest.xml

Resources

aapt

Presenter
Presentation Notes
Android programs (apps) are compiled into .dex (dex =Dalvik Executable) files. Android devices run a virtual machine called Dalvik. The compiled Java code of Android is called dex (“Dalvik Executable”). It’s one file that contains the entire compiled code. That file is known in the Android realm as “classes.dex”.
A dex file is a dalvik executable file which is an optimised class file that runs on the dalvik virtual machine. An app is compiled into a class file and then it is optimised to a dex file because of this, the size of the dex file is always limited in size than the class file.

Security Approaches

e Market Protection

o Signing
o Review by playstore

e Platform Protection

o Sandboxing - VM for each app
o Permissions - either a benign or a malicious app may require the same permissions
m New versions have dangerous permissions which aren’t granted during installation time

StormDroid Framework

.. LOGS |ttt :

Preprocesso

Y
« * xml
« * smali

Figure 1: The StormDroid Framework for Android Malware Detection

StormDroid

Three phases in execution:

Preamble - reverse engineering to get resource files
Feature extraction - extraction of features from combined set of contributed
features and creation of binary input vector

e Classification - ML models for classification of an app as benign or malicious

Framework cntd..

Work flow of the detection process is in following topology:

e Submitted app is first disassembled to extract its features
o static profiling tools: apktool, dex2jar, java decompilation tool

Differential metrics of the app are calculated
Run intersection analysis and output a binary input vector
All the data associated with the app are in a single stream

Concurrently processes multiple streams
o enables a market to efficiently detect a large number of submissions.

Classification

e Training performed on 3000 apps

e Total app samples - 7970 apk files

o 4350 benign apps
o 3620 malicious apps - includes phishing, trojans, spyware, root exploits

Table 1: Data Sets for Android Malware Detection

Source Type of Sets Universal Set | Analysis Set | Training Set | Test Set | Comparison Set
Benign (APKs) 4,350 1,516 1,500 1,000 0
MobiSec Lab 2,000 900 900 600 500
Malicious (APKs) | Zhou ef al. [40] 1,260 500 500 300 400
Contagio 360 116 100 100 100
Total (APKs) 7,970 3,032 3,000 2,000 1,000

Feature Extraction

e [eatures
o Well received features
m Permissions
m Sensitive API Calls - obtain Smali files from the static decompiling
o Telephony
e SMS/MMS
e Network/Data
o Newly-defined features
m Sequence
m Dynamic Behaviour

Feature extraction contd..

Permission settings & Sensitive API calls are indeed relevant to the benign or

malware behaviors
Type [l Benign [l Malicious
INTERNET -

READ_PHONE_STATE -

ACCESS_NETWORK_STATE -
WRITE_EXTERNAL_STORAGE -
ACCESS_WIFI_STATE -

READ_SMS -

Top 10 Permissions

RECEIVE_BOOT_COMPLETED-
WRITE_SMS -
SEND_SM-

RECEIVE_SMS -

T

500 1000 1500
Number of Samples

(a) Comparison of top 10 requested permissions by
3,032 benign and malicious apps

o-

Type [l Benign [l Maticious

OpenConnection -

GetDeviceld -

Connect-

SetConnectTimeout-

GetSubscriberid -

SetReadTimeout-

Top 10 API Calls

Query -
Notify -
GetResponseCode-

Disconnect-

500 1000 1500
Number of Samples

(b) Comparison of top 10 requested sensitive API calls
by 3,032 benign and malicious apps

o-

Feature extraction - Sequences

e Subtraction-Differential metric: D1 (resp. D2) as the set of top values of
d(s,m,b) (resp. d(s,b,m)) that outnumber the threshold 200

ms = a malicious app m w.r.t. # sensitive API call s;
bs = a benign app b w.r.t. # sensitive API call s;
d(s,m,»y = difference between ms and bs;

d(s,»,m) = difference between bs and ms.

- D=D1luD2
e Logarithm-differential metric: top 16 values that are greater than 0.4 (set
L1) and the bottom 11 values of that are less than 0.05 (set L2)

lg{(bff’il)“}

=> L=L1UL?2

Feature Extraction - Sequences

e Subtraction-Logarithm metric
->S=D(L

=>if the APK contains at least one of the features either in set D1MNL1 or in

set D2NL2 ,

4 Add weights +(d(s,m,b)/1,516) or —(d(s,b,m)/1516) to sum, respectively;

->if the (sum value of the set S) > 0.4, the corresponding sequence is
heuristically marked as ‘1’ otherwise, it is marked as ‘0’

Type [Benign [waiicious

TelephonyManager.getSubscriberld -
TelephonyManager.getSimSerialNumber-
SmsManager.getDefault-

TelephonyManager.getDeviceld -

SmsManager.sendTextMessage -
URLConnection.setReadTimeout-
Runtime.exec-

URLConnection.getContentType-

™

Top 13 Sequences

URLConnection.setConnectTimeout-
WifiManager.setWifiEnabled - [l
WifiManager.getWifiState -

NotificationManager.notify -

URLConnection.getURL -

500 1000 1500
Number of Samples

0

Figure 3: Top 13 differences of sensitive API calls between ma-
licious and benign apps by 3,032 benign and malicious samples

PackageManager.checkPermission-
TelephonyManager.getNetworkType -
WifiManager.getConnectioninfo-
WifiManager.isWifiEnabled -

WifiManager.getScanResults -

Top 14 Sequences

ActivityManager.getRunningAppProcesses -
LocationManager.addGpsStatusListener -
LocationManager.getGpsStatus -
TelephonyManager.getNeighboringCellinfo -

Runtime.maxMemory -

Figure 5: Top 14 differences of sensitive API calls between be-
nign and malicious apps by 3,032 benign and malicious samples

HttpURLConnection.getResponseCode -
TelephonyManager.getPhoneType -
URL.openStream -
URLConnection.addRequestProperty -

r""'F""I“'HT

500 1000 1500
Number of Samples

(=]

Feature extraction - Dynamic Behaviour
e Apkfileis runin DroidBox 6

o Incoming/outgoing network data

o File read and write operations

o Started services and loaded classes through DexClassLoader

o Information leaks via the network, file and SMS

o Circumvented permissions

o Cryptography operations performed using Android API
Sent SMS and phone calls

o two images showing the temporal order of the operations and a treemap to check similarity
between analyzed packages.

e Static analysis of the saved log files to extract the top features of dynamic
behaviors.

Feature extraction contd..

Several well-known features do not help distinguish between benign and malicious
apps, which will increase system overhead. They choose 1,516 benign and
malicious APKSs to prune well-known features of benign and malicious apps in all

categories.

Table 2: Features for Machine Learning

Type of Features | Original Features | Selected Features
Permission 120 59
Sensitive API Call 240 90
Sequence 67 1
Dynamic Behavior 15 5

Total 442 155

Results

Table S: Comparative results of our work and the previous work

ML Algorithm | Yuan et al. [38] (Accuracy) | Ours (StormDroid) (Accuracy) |
Support Vector Machines (SVM) 80.00% 93.20%

Decision Tree (C4.5) 77.50% 91.00%

Artificial Neural Networks (MLP) 79.50% 92.60%

Naive Bayes (NB) 79.00% 90.80%

K -Nearest Neighbors (IBK) N/A 93.80 %

Bagging predictor N/A 92.80%

Best

Performing Support Vector Machines (SVM) K -Nearest Neighbors (IBK)
Classifier

Universal Data Set Size 500 APKs 7,970 APKs
Training Set Size 300 APKs 3,000 APKs

Test Set Size 200 APKs 2,000 APKs

Evaluation

Randomly 1000 malicious apps are chosen for comparison
1 As per the authors, this helps understand coverage and avoid over-fitting

Table 6: Reference experiment: The coverage of other leading malware detection tools

| Malware Detection Tool | The Number of Detection | The Coverage of Detection (Percentage) |

Ours (StormDroid) 1,000 94.60 %
Trend Micro 1,000 41.40%
Kaspersky 1,000 55.60%
360 1,000 86.20%
McAfee 1,000 84.20%
Avira 1,000 75.40%

Scalability

e StormDroid outperforms single thread by approximately three times in each
group

Table 7: Experimental evaluation

| #APKs | Experimental Times | # APKs per Group | AVG Single Time (sec) | AVG StromDroid Time (sec) | Ratio |

200 10 20 715 209 0.29
200 10 40 718 201 0.28
200 10 50 712 203 0.29
200 10 200 710 207 0.29

*Ratio is defined as the AVG StromDroid Time relative to the AVG Single Time, i.e., AV GStromDroidTime/ sy GSingleTime.

Thoughts

e Evolving malware requires evolving malware detectors
o Recent malware samples should be collected constantly to evolve the model
o Attacks against learning techniques
m Malwares can incorporate benign features to affect detection scores
m Frequent retraining on representative datasets can mitigate such attacks

e Decompilation to source code is more difficult than to smali files
o Repackaging doesn't affect StormDroid
o But even standard code obfuscation techniques makes reverse engineering very difficult.
It impairs the StormDroid Framework

	StormDroid: A streaminglized Machine Learning-Based System for Detecting Android Malware
	Malware Detection in Android
	Countermeasures
	Machine Learning for Malware Detection
	Background - Android Manifest
	Slide Number 6
	Security Approaches
	StormDroid Framework
	StormDroid
	Framework cntd..
	Classification
	Feature Extraction
	Feature extraction contd..
	Feature extraction - Sequences
	Feature Extraction - Sequences
	Slide Number 16
	Feature extraction - Dynamic Behaviour
	Feature extraction contd..
	Results
	Evaluation
	Scalability
	Thoughts

