
REX: A Development Platform and
Online Learning Approach for

Runtime Emergent Software Systems

Barry Porter,
Matthew Grieves,

Roberto Filho
David Leslie

Introduction
Designing, Analyzing and Maintaining – Millions of LOC:

Is it sustainable?

 Software development: Models, Policies, and Processes

 Autonomous, Self-Adaptive, and Self Organized Software
System

Emergence of Software System - Autonomously from pool of
available building blocks

 Responsive to actual runtime conditions.

 Can show rationale behind the choice

REX: Development Platform

 Implementation Platform-

Dana (Dynamic Adaptive Nucleic
Architecture)

 PAL Framework
 Perceive – Internal + External

conditions

 Assemble and Re-assemble modules

 Learn

 Online Learning – Statistical Linear
Bandits, using Thompson Sampling.

Dana
 Component Based Software Paradigm
 All Components – Runtime Replaceable
Multi-threaded imperative language

(what and how)

Example: From Source code

component provides App requires io.Output out{

int App:main(AppParam params[]){

out.println("Hi! :-)")

return 0

}

}

Dana: Runtime Adaptation

PAL Framework: Perception & Assembly

 Perception
 Implemented using Recorder Interface

 Data – Event and Metrics (Name, Value, Flag)

 Assembly
 Starts with main component of target system

 Read Required components (recursively)

 Search interfaces in resources directory and their potential implementation

 Example – Interface (io.File) io (Implementation Directory)

 Create a list of configurations

 Use Adaptation protocol to reassemble

Sample Implementation: Webserver

Number of components in system = 30
 File System, String Parsers,
Number of configurations – 2*3*(2+5) = 42
 Request Handler – Avg response time
 HTTPHandler – Events for requested

resource & their size

Exploration Vs Exploitation:

 Upper Confidence Bound Action
Selection

 Greedy – Exploit current knowledge to
maximize immediate reward

 Posterior Sampling- Thompson
Sampling
 Estimate posterior distribution using

prior distribution

Multi-armed Bandit
 Arm – One configuration of webserver
 Action – choose one config and deploy

Handling Environment Changes

 Entropy –
 High => Request for different resources

 zero => Single resource requested repeatedly

 Text Volume – Highly Compressible
Example – HTML, CSS Files

 High entropy interval – more than 50%
request of high entropy

 7 Extra Regression Coefficients

 Total number of configurations = 42*4 = 168

Results – Runtime Adaptation

 Webserver is actually paused
 pauseObject – busy waiting for

new function call
 pause – prevent new objects

from being instantiated

Results: Divergent Systems

Entropy\Text Low High

Low Cache Cache &
Compress

High Default (Due
to hash
collision)

Cache &
compression

Results:
 1 test iteration = 10 second (1000 experiments)

 Large File => Less training samples

Small HTML Files with low latency Large HTML Files with low latency

Results: Alternating Request Pattern
 Left - Constantly forget and re-learn

Thoughts

Will the adaptation be computationally expensive as number of
components and metrics increase ? – Scalable?

 Impact on QoS during transition

 Ease of adding access patterns in model

 Overhead of providing various implementation for a component Vs
Simple Knob Tuning

 Extra overhead of module loading for a large system

Questions ?

