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DeepSense vs QualityDeepSense

e DeepSense

o Unified neural network framework
o Provedto be very good for mobile sensing and computing tasks
o Does not consider noise/heterogenous qualily of the sensor data

Solution!!

e QualityDeepSense
o Modification of DeepSense to consider noise in the data
o Uses sensor-temporal self-attention mechanism
o ldentify the qualities of input by calculating dependencies of their internal representation in
DNN



Noise

e |owcostsensors
o Insufficient accuracy, calibration &granularity

e Heavy multitasking & 1/O workload
May be due to other components of the system
Noise do not determine the complex dependency between sensing inputs



Network Architecture
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Data Flow

e Raw sensordata is divided across time for width t and a fourier transform is
applied to each interval--Input of the network

3 Individual conv layers for extracting relations within a sensor

Sensor Attention

3 Merge layers to extract relations between sensors

RNN to extract temporal dependencies

Temporal attention module

Output (softmax)



Self-Attention

e Estimate sensing quality
o Calculate internal dependencies

e Two steps
o Calculate attention vectora a = Softmax(1-(Z-Z7))
o Weighted sum over rows using a
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e To determine the dependencies among k-vectors



Evaluation

e Nexus-5
o 2.3GHz, 2GB memory, manually set to L1GHz

e TensorFlow-for-mobile
o For DNN methods
o Weka for SVM

e Dataset

o 2-motion sensors-Accelerometer and gyroscope
o 9 users with 6 activities (un-ordered)
o Noise-augmented using white gaussian noise on either of time or frequency domain.



Accuracy Improvements
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Figure 3: The accuracy of algorithms on HHAR with Figure 4: The accuracy of algorithms on HHAR with
additive white Ganccian nnice an freanenev domain. additive white Gaussian noise on time domain.



Effectiveness
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e Attention
o Multiplication of two attention modules 150

e Correlation b/w noise and Attention o

o Non-linear
o Difference in sensing measurement

e Attention is small for strong noise
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Figure 5: The correlation between attention and addi-
tive noise.



Execution time & Energy consumption
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Figure 6: The execution time of algorithms on Nexus ~ Figure 7: The energy consumption of algorithms on
5. Nexus 5.




Overall

e QualityDeepSense performs better than DeepSense and is able to solve the
heterogeneous quality sensing problem

e Itshows lower performance degradation but with the expense of some
execution time and energy consumption overhead

e There is no optimization done. Hyperparameter tuning & more network
optimization can be done to reduce the overhead.



	QualityDeepSense: Quality-Aware Deep Learning Framework for Internet of Things Applications with Sensor-Temporal Attention
	DeepSense vs QualityDeepSense
	Noise
	Network Architecture
	Data Flow
	Self-Attention
	Evaluation
	Accuracy Improvements
	Effectiveness
	Execution time & Energy consumption
	Overall

