Placeto: Efficient Progressive Device Placement Optimization

Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi Mao, Mohammad Alizadeh

Recall--- What is Device Placement

- G(V,E): the computational graph of a neural network
- D: a set of devices (e.g., CPUs, GPUs)
- Π: V → D
- p(G, π): the duration of G's execution when its ops are placed according to π
- Goal: find a placement π that minimizes p(G, π)

Recall --- Why need Device Placement

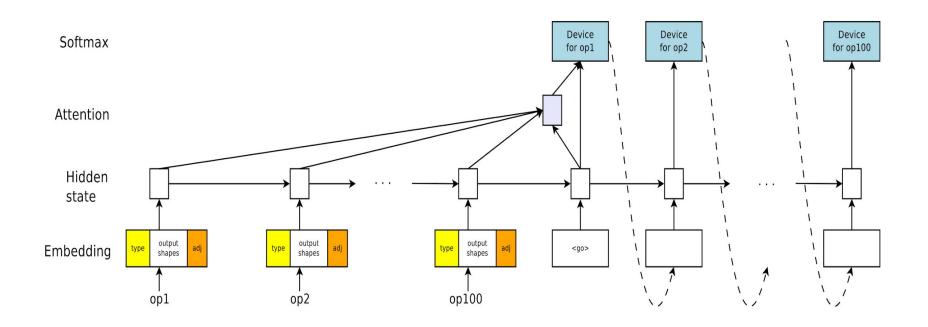
• Trend toward many-device training, bigger models, larger batch sizes

Growth in size and computational requirements of training and inference

Recall --- Current Approach

- Human Expert
 - (1) Require deep understanding of devices (e.g., bandwidth & latency behavior);
 - (2) Not flexible enough & not generalize well.
- Automated Approach (RNN-based Approach)
 - (1) Require significant amount of training/training time is long (e.g., 12-27 hours);
 - (2) Do not learn generalizable device placement policies.

Recall --- RNN-based Approach



Can it be better?

 Is it able to transfer a learned placement policy to unseen computational graphs without extensive re-training?

Is it possible to improve training efficiency and generalizability?

Placeto --- Key Ideas

 Model the device placement task as finding a sequence of iterative placement improvements

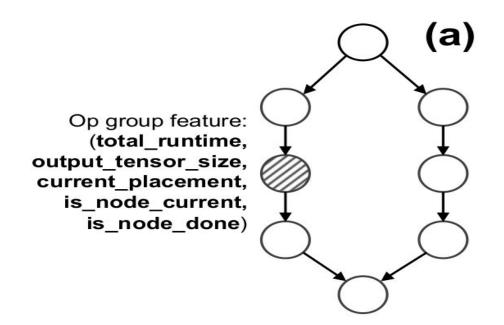
Use Graph Embeddings to encode the computational graph structure

Design --- MDP Formulation

- Initial state s_o, consists of G with an arbitrary device placement for each op group
- Action in step t outputs a new placement for the t-th node in G based on S_{t-1}
- Episode ends in |V| steps
- Two approaches for assigning rewards:
 - (1) Assign 0 reward at each intermediate RL step & the negative run time of the final replacement as final reward
 - (2) Assign intermediate rewards $r_t = p(s_{t+1}) p(s_t)$

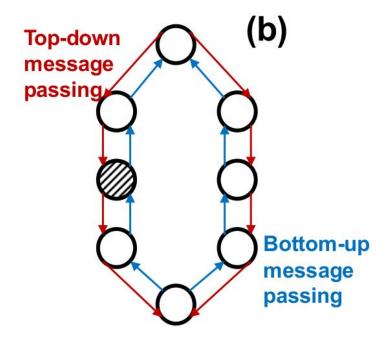
Design --- Graph Embedding (1/3)

Computing per-group attributes



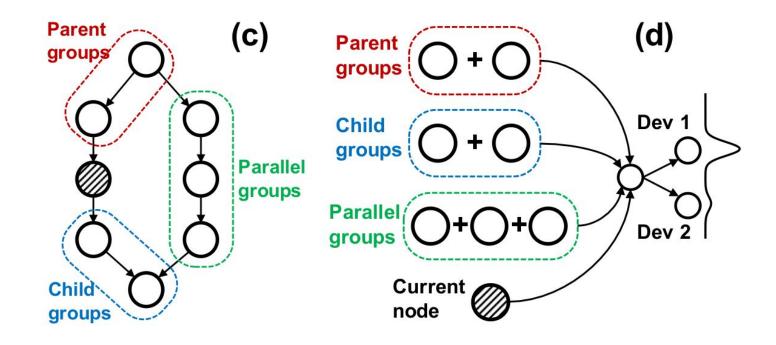
Design --- Graph Embedding (2/3)

Local neighborhood summarization



Design --- Graph Embedding (3/3)

Pooling summaries



How good are Placeto's placements in terms of execution time?

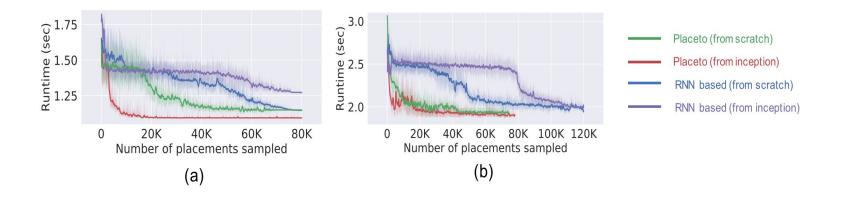
How well does Placeto generalize to unseen graph?

- Benchmark computational graphs:
 - (1) Inception-V3
 - (2) NASNet
 - (3) NMT
- Baseline:
 - (1) Human-expert placement
 - (2) RNN-based approach

Performance

	Placement run time (sec)				Training time (# placements sampled)			
Model	Expert	RNN-	Placeto	Placeto	RNN-	Placeto	Placeto	Speedup
		based [10]	(scratch)	(transfer)	based [10]	(scratch)	(transfer)	factor
Inception-V3	1.27	1.21	1.20		11.2 K	3.7 K	 2	
NMT	2.00	1.52	1.52	1.57	84 K	20 K	3.9 K	21×
NASNet	0.86	0.84	0.83	0.84	76 K	28.8 K	12.2 K	6×

Generalizability



Future Work

Using a mix of models with diverse graph structures during training,
Placeto may exhibit better generalizability.

 Larger graphs, larger batch sizes, and more heterogeneous will be more challenging and can potentially lead to larger gains.

Extend Placeto to jointly learn ops grouping and placement.