
Mitigating the Compiler Optimization 
Phase-Ordering Problem using 

Machine Learning

Sameer Kulkarni & John Cavazos



Intro

- Why we need code optimization?

- Prog. Language design flaw

- e.g. goto statement in C/Cpp

- People are evil and chaotic

- e.g. define unused variables inside a loop



Intro

- What do we have so far?

- Optimization option with fixed order



Intro

- What do we have so far?



Intro

- What do we have so far?

- Optimization option with fixed order

- Genetic algorithm that takes care of order



Results from GA



Problem with GA

- Expensive searching time for best result

- No fine-grain method level optimization

- Unless you have method level timer



Possible solutions

-  Predict the complete sequence

-  Predict the current best optimization



Possible solutions

- Predict the complete sequence

-  Predict the current best optimization

-  Markov Property



NEAT

-  Neuro-Evolution of Augmenting Topologies

- GA with ANN flavor



NEAT



The ANN of NEAT

- Takes feature as input, predict best optimization to 

apply

- Sometimes the second best option to avoid dead loop



The ANN of NEAT



Implementation

- 60 ANNs each generation

- 300 generations

- Trained on seven benchmarks from the Java Grande 

benchmark suite 

- Tested on SPECjvm98, SPECjvm2008, and DaCapo



Result from NEAT



Result from NEAT



GA vs NEAT



GA vs NEAT

- Costs for training GAs and NEAT

- GA : 11.4 days

- NEAT : 13.2 days

- GA per benchmark : 70 days



GA vs NEAT


