
NetBouncer: Active Device and 
Link Failure Localization in Data 

Center Networks

Presented by
Akash Kulkarni



Problems that may occur in Data Center
• Routing misconfigurations
• Network device hardware failures
• Network device software bugs
• Gray Failures (subtle or partial malfunctions):
• Drop packets probabilistically (can not be detected by evaluating connectivity)



Problems in Traditional Failure 
Localization System
1. Traditional Systems which query switches for packet loss are unable 

to observe gray failures.
2. Previous Systems need special hardware support, for eg, tweaking 

standard bits on network packets – making it unable to be readily 
deployed.

3. Some prior systems can only pinpoint a region which has the 
failures. Extra efforts to discover actual error. 



Failure Localization System must satisfy 
three requirements
1. Failure localization system needs an end-host’s perspective.
2. Should be readily deployable in practice – compatible with 

hardware, existing software stack and networking protocols.
3. Localizing failures should be precise and accurate (pinpointing 

towards link or device failures). Should incur less false positives and 
false negatives.



NetBouncer introduces:
• Efficient and compatible path probing method
• A probing plan to distinguish device failures
• A link failure inference algorithm

Clos network



Probing Plan
• Probing scheme should satisfy two requirements:

1. Pinpoint the routing path of probing packets 
2. Consume less network resources – such as bandwidth.



NetBouncer’s Path Probing via Packet 
Bouncing
• IP-in-IP protocol 

• Because the target network is Clos Network:
1. Minimizes number of IP-in-IP headers (because less and smart connections)
2. Links are evaluated bidirectionally – allowing the graph to be undirected.
3. Sender and receiver are on the same server – less complicated.



NetBouncer workflow



Mathematical Notations
• Each link has a success probability, denoted by xi for the ith link.
• Path success probability of jth path , denoted by yj, described as

• Data inconsistency
• Imperfect measurements
• Accidental packet loss

• Latent factor model



Algorithm running on NetBouncer’s
Processor



Algorithm running on NetBouncer’s
Processor



Implementation
• Controller: 
• Takes network topology as input and generates probing plan.
• Plan contains number of packets to send, packet size, UDP source destination 

port, probe frequency, TTL etc
• Agent: 
• Fetches probing plan from Controller which contains the paths to be probed.
• Generates record containing path, packet length, total number of packets 

sent, number of packet drops, RTTs etc.
• CPU and traffic delays are negligible because of IP-in-IP technique.



Implementation
• Processor:
• Front End: collects records from agent.
• Back End: runs detection algorithm.

• Result verification and visualization tool:
• Shows packet drop history of detected links for visualization.



Observations
• NetBouncer’s probing plan achieves the same performance as hop-

by-hop probing plan while it remarkably reduces the number of paths 
to be probed.
• Time to detection for failures < 60 seconds.



Observations
Table 1: Variance of NetBouncer with setup

Table 2: Comparison of CD and SGD Table 3: Comparison of NetBouncer with existing schemes



Deployment experiences
• Clear improvements:

1. Reduces detection time of gray failures from hours to minutes
2. Deepened understanding of the reasons why packer drops happen – silent 

packer drops, link congestion, link flapping, switch unplanned reboot, 
packet blackholes etc.



Deployment experience
• Case 1: Spine router gray failure
• Switch silently dropping packets .
• Led to packet drops and latency increases.
• Traditional systems detected end-to-end latency issues. 
• Clear that one or more switches were dropping packets. But which one?
• NetBouncer detected lossy links. 



Deployment experience
• Case 2: Polarized traffic
• Switch firmware bug – polarized traffic load onto a single link
• NetBouncer observed that the Scavenger traffic was dropped at a probability 

of 35% - causing congestion.



Deployment experience
• Case 3: Miscounting TTL
• Supposed to be decremented by one though each switch
• NetBouncer detected that certain set of switches were decrementing by two.
• Manifests as a “false positive” by misclassifying affected good links as bad.
• Verified and visualized to realize it was false positive. 
• Further analysis of detected devices and links – internal switch firmware bug.



Deployment experiences – failed 
cases
• DHCP booting failure.
• Servers could send DHCP DISCOVER packets but could not receive responding 

DHCP OFFER packets.
• NetBouncer did not detect packet drops. However, the real problem was 

caused by NIC.

• Misconfigured switch ACL (ACL filters packet)
• Packets drop for limited set of IP addresses.
• NetBouncer scanned wide range of IP addresses – so signal detected was 

weak.

• Firewall rules – wrongly applied.



Limitations of NetBouncer
• Assumes probing packets experiences same failures as real 

applications.
• Does not guarantee zero false positives or negatives.
• Assumes failures are independent (might lead to wrong detection)
• Only detects persistent congestion (depends on the probing 

frequency)

NetBouncer - running in Microsoft Azure’s data centers for three years!



Thank You


