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Objective:

» Overcome to make it useful to
learn optimal network policies.

which allows researchers to deploy different
networking topologies and evaluate different congestion control
algorithms.

Problem Definition

* |[dentify difficulties faced by RL algorithms.

for Reinforcement Learning to succeed in the
datacenter context



Motivation to use RL in networking

* Many can be formulated as RL
problems.

« Some of the problems include: Data-driven flow control, routing
and power management.

* RL has the objective of
* RL models have the capability to

 Current policies are mostly which respond to micro-bursts and
flow-collisions.



Difficulties in using Reinforcement Learning
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_ algorithms often suffer from

_ researchers can try out unlimited environmental state
oresentations which can cause RL models to overfit.

_ algorithms

* Reproducibility can be affected by extrinsic factors (e.g.
nyperparameters or codebases) and intrinsic factors (e.g. effects of

random seeds or environment properties).
 Data center operators expect stable, scalable and predictable behavior.



Requirements of RL

Patterns in Traffic:

« PCC and Remy are two technigues that demonstrate that congestion
control algorithms can be evolved from trained data.

« DC traffic pattern can be used to which
forecasts traffic matrix and controls host sending rates.

Centralized control algorithms:

* Centralized policy has global view.

* It has ability to plan ahead and grant hosts traffic rates based on the
model.



Requirements of RL

Sources of Information:
« CC algorithms use data from transport layer and below.

* It IS from network links, switches and other
components of hardware.

» Essential to collect congestion signals.

 Some features: switch buffer occupancy, packet drops, port utilization,
active flows, and RTT, latency, jitter and queue length.

« Throughput can be used as a

* One-hot encoding of active TCP/UDP flows per switch port can be
used to



Emulator Design

Key components:

* Network topologies

* Traffic generators

« Monitors

 Agents to enforce congestion policy

Mininet: Software Defined Networking Simulator that can run on single
laptop.

RLIib: Library that provides RL abstractions like defining policy,
optimizer etc.



Emulator Design
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Figure 1: Architecture of the Iroko emulator.




RL implementation in Iroko

Agent action:

* We represent this action set as a vector 'a' of dimensions equal to the
number of host interfaces.

« Each dimension ai represent % of max bandwidth allocated.

bw; < bw,ar *@; % 1€ hosts

Reward Function:

P 2 |
R« . Z .bu}ifbﬂ'!”““” - \]f‘lLLE’, | {Qi}(qmu.c) — std
tChosts bandwidth reward ~ weight queue penalty devpenally



Experiments

« Compare the performance of 3 RL algorithms with TCP New Vegas
and DCTCP.

« DCTCP: Switches mark packets after the queue length exceeds a
threshold.

« TCP New Vegas: Changes the congestion window size based on the
RTT observed In packages.

* Rewards for TCP algorithms are also calculated.
« TCP's CC can be confounding with RL's CC
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Conclusion

« Great contribution towards Machine Learning: Interfaced with
OpenAl gym

 Carefully analyzed the requirements for RL and tried to provide them
In the framework.

* Enables researchers to see the performance of conventional non-RL
algorithms through the lens of reward function.

 Not specified the nature of hardware simulated.
* Deals with protocols from TCP/IP stack.



Overview of RL
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DDPG Algorithm

Algorithm 1 DDPG algorithm

Randomly initialize critic network Q(s. al#%) and actor pu(s|8*) with weights 8% and 6% .
Initialize target network @’ and ' with weights 09" « 69_ g+ « g»
Initialize replay buffer /¥
for episode = 1. M do
Initialize a random process N\ for action exploration
Receive initial observation state s,
fort=1.Tdo
Select action a; = pu(s.|0") + N; according to the current policy and exploration noise
Execute action a; and observe reward r; and observe new state s; .
Store transition (s,.a;. 1y, 8,401 ) in R
Sample a random minibatch of N transitions (s;.a;.r;. s, ) from I
Set yi = 1i + YQ'(Siv1. 4 (8:41]0*)|09)
Update critic by minimizing the loss: L = % 3 (w: — Q(s;.a,]609))?
Update the actor policy using the sampled policy gradient:

1
Voud = 5 D VaQ(5.al0?)|ams,ampu(s) Vo 11(516") s,

Update the target networks:
09 — 709 + (1 —71)0Y
0" «— 76" + (1 —T1)8*

end for
end for




Overview of RL Methods

* https://towardsdatascience.com/introduction-to-various-
reinforcement-learning-algorithms-i-g-learning-sarsa-dqn-ddpg-
72a5e0ch6287

* https://medium.freecodecamp.org/an-introduction-to-
reinforcement-learning-4339519de419

« PPO: Standard policy gradient methods perform one gradient update
per data sample, we propose a novel objective function that enables
multiple epochs of minibatch updates.

 Reinforce: Weight adjustments In direction of gradients of immediate
reinforcement and delayed reinforcement.


https://towardsdatascience.com/introduction-to-various-reinforcement-learning-algorithms-i-q-learning-sarsa-dqn-ddpg-72a5e0cb6287
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

