
Iroko: A Framework to Prototype 
Reinforcement Learning for Data Center 

Traffic Control
• Fabian Ruffy

• Michael Przystupa

• Ivan Beschastnikh

University of British Columbia, Canada



Objective:

• Overcome difficulties of Reinforcement Learning to make it useful to
learn optimal network policies.

• Design an emulator which allows researchers to deploy different
networking topologies and evaluate different congestion control
algorithms.

Problem Definition

• Identify difficulties faced by RL algorithms.

• Analyze requirements for Reinforcement Learning to succeed in the
datacenter context



Motivation to use RL in networking

• Many data center networking challenges can be formulated as RL
problems.

• Some of the problems include: Data-driven flow control, routing
and power management.

• RL has the objective of maximizing future rewards.

• RL models have the capability to learn anticipatory policies.

• Current policies are mostly reactive which respond to micro-bursts and
flow-collisions.



Difficulties in using Reinforcement Learning

• RL algorithms often suffer from over fitting.

• RL researchers can try out unlimited environmental state
representations which can cause RL models to overfit.

• RL algorithms lack reproducibility.

• Reproducibility can be affected by extrinsic factors (e.g.
hyperparameters or codebases) and intrinsic factors (e.g. effects of
random seeds or environment properties).

• Data center operators expect stable, scalable and predictable behavior.



Requirements of RL

Patterns in Traffic:

• PCC and Remy are two techniques that demonstrate that congestion
control algorithms can be evolved from trained data.

• DC traffic pattern can be used to design a proactive algorithm which
forecasts traffic matrix and controls host sending rates.

Centralized control algorithms:

• Centralized policy has global view.

• It has ability to plan ahead and grant hosts traffic rates based on the
model.



Requirements of RL

Sources of Information:

• CC algorithms use data from transport layer and below.

• It is possible to collect data from network links, switches and other
components of hardware.

• Essential to collect congestion signals.

• Some features: switch buffer occupancy, packet drops, port utilization,
active flows, and RTT, latency, jitter and queue length.

• Throughput can be used as a metric to optimize.

• One-hot encoding of active TCP/UDP flows per switch port can be
used to identify network patterns.



Emulator Design

Key components:

• Network topologies

• Traffic generators

• Monitors

• Agents to enforce congestion policy

Mininet: Software Defined Networking Simulator that can run on single
laptop.

RLlib: Library that provides RL abstractions like defining policy,
optimizer etc.



Emulator Design



RL implementation in Iroko

Agent action:

• We represent this action set as a vector 'a' of dimensions equal to the
number of host interfaces.

• Each dimension ai represent % of max bandwidth allocated.

Reward Function:



Experiments

• Compare the performance of 3 RL algorithms with TCP New Vegas
and DCTCP.

• DCTCP: Switches mark packets after the queue length exceeds a
threshold.

• TCP New Vegas: Changes the congestion window size based on the
RTT observed in packages.

• Rewards for TCP algorithms are also calculated.

• TCP's CC can be confounding with RL's CC



Results



Conclusion

• Great contribution towards Machine Learning: Interfaced with
OpenAI gym

• Carefully analyzed the requirements for RL and tried to provide them
in the framework.

• Enables researchers to see the performance of conventional non-RL
algorithms through the lens of reward function.

• Not specified the nature of hardware simulated.

• Deals with protocols from TCP/IP stack.



Overview of RL



DDPG Algorithm



Overview of RL Methods
• https://towardsdatascience.com/introduction-to-various-
reinforcement-learning-algorithms-i-q-learning-sarsa-dqn-ddpg-
72a5e0cb6287

• https://medium.freecodecamp.org/an-introduction-to-
reinforcement-learning-4339519de419

• PPO: Standard policy gradient methods perform one gradient update 

per data sample, we propose a novel objective function that enables 

multiple epochs of minibatch updates.

• Reinforce: Weight adjustments in direction of gradients of immediate 

reinforcement and delayed reinforcement.

https://towardsdatascience.com/introduction-to-various-reinforcement-learning-algorithms-i-q-learning-sarsa-dqn-ddpg-72a5e0cb6287
https://medium.freecodecamp.org/an-introduction-to-reinforcement-learning-4339519de419

