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Introduction

e Internetworked mobile & embedded devices -> Internet of Things
(Sensor-rich world) -> Revolutionize the interactions

e Build smarter and more user-friendly applications

e Deep learning has greatly changed the way that computing devices
process human-centric content such as images, video, speech, and audio



Four Key Research Questions

1. What deep neural network structures can
for diverse loT applications?

2. How to of deep learning models such
that they can be efficiently deployed on resource-constrained loT
devices?

3. Howto in the correctness of deep

learning predictions for loT applications?

4. How to in learning?



Deep Learning Models For Sensor Data

e |OT applications often depend on collaboration among multiple sensors;

e Thetaskson loT devices can be generally categorized as:
&



Deep Learning Models For Sensor Data
o For (tracking/localization), sensors generate
measurements of physical quantities.

° Noisy (nonlinear & correlated over time); hard to separate
signal from noise; lead to estimation errors and bias.



Deep Learning Models For Sensor Data
o For (activity/context recognition), a
typical approach is to hand-crafted features derived from raw sensor data.

° time-consuming; requires extensive experiments to
generalize well.



Deep Learning Models For Sensor Data

e Design novel neural network structures for multisensor data fusion:
1. Model complex interactions among multiple sensory inputs;

2. Encode features of sensory inputs effectively.



Deep Learning Models For Sensor Data
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FIGURE 1. Main architecture of the DeepSense framework.




Deep Learning Models For Sensor Data
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FIGURE 2. Performance metrics of heterogeneous human activity recognition (HHAR)
task with the DeepSense framework. FIGURE 3. Performance metrics of UserID task with the DeepSense framework.



Compressing Neural Networks Structures

e Resource constraints.
e A key question is whether it is possible to compress deep neural networks.

1. Can a unified approach compress commonly used deep learning
structures, including fully connected, convolutional, and recurrent neural

networks, as well as their combinations?

2. To what degree does the resulting compression reduce energy, execution
time, and memory needs in practice?



Compressing Neural Networks Structures
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FIGURE 4. Overall DeeploT system framework. Orange boxes represent dropout opera-
tions. Green boxes represent parameters of the original neural network.



Compressing Neural Networks Structures
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FIGURE 5. The tradeoff between testing accuracy and memory consumption by models.



Compressing Neural Networks Structures
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FIGURE 6. The tradeoff between testing accuracy and execution time.
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Estimating Uncertainty

How to offer principled uncertainty estimates that can faithfully reflect the
correctness of model predictions?

How to develop methods that provide accurate uncertainty estimates in
prediction results obtained from deep learning models?

How to develop resource-efficient solutions for the uncertainty estimation
problem, such that they can be implemented on resource-limited loT
devices?



Estimating Uncertainty

1. A simple, well-calibrated, and efficient uncertainty estimation algorithm for
a multilayer perceptron (MLP);

2. Apply a tunable function, based on a weighted sum of negative
log-likelihood and mean square error, as the loss function.



Estimating Uncertainty

TABLE 1. Mean absolute error (MAE) and negative log-

likelihood (NLL) for the NYCommute task.

Deep learning algorithm MAE NLL

RDeepSense 5.64 1.7
SSP-1 8.15 4.86
SSP-3 7.90 4.67
SSP-5 151 4.84
SSP-10 7.03 4.81

MCDrop-3 5.69 19,995.6
MCDrop-5 5.64 I885%8
MCDrop-10 5.61 640.35
MCDrop-20 5.61 640.35
Gaussian Process 11.84 746




Estimating Uncertainty
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FIGURE 8. The calibration curves of RDeepSense, GP, and MCDrop-k. FIGURE 9. The calibration curves of RDeepSense, GP; and SSP-.



Minimizing Labeled Data
e The need for labeling offers a significant practical impediment to the use
of deep learning in 0T contexts, where labeling cannot be easily done.

° has been proposed as a promising
deep learning technique for unsupervised and semi-supervised learning.



Minimizing Labeled Data
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Minimizing Labeled Data

TABLE 2. Semisupervised training of HHAR

with DeepSense framework.

p% 10% 5% 3% 2% 1%

Sense-GAN 94.8% 92.5% 91.4% 90.4% 88.3%

DeepSense 92.0% 89.3% 85.3% 83.6% 79.1%




Future Work

1.

Can one build a unified deep learning framework for largely
heterogeneous sensory inputs, such as audio signals, Wi-Fi signals, and
motion inputs?

What are the impact of neural network compression on system
performance, such as execution time and energy consumption?

Can one extend uncertainty measurements to other deep learning models
besides MLPs?

How does one learn in highly dynamic environments where it is impossible
to collect a large number of data samples?



