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Introduction

• Introductions – all

• Who are you?

• What interests you and why are you here?
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Introduction (cont’d)

• What is this course about?

– machine learning
• Interpreted broadly: learning from data to improve …

– computer systems
• Interpreted broadly: compilers, databases, networks, 

OS, mobile, security, … (not finding a boat in an image)
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Confession

• If you took a ML course, you know more 

than me about it

• Interestingly …

– Took an AI course from Geoff Hinton

– Did an M.S. on neural networks eons ago
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Web Site

• http://www-

users.cselabs.umn.edu/classes/Spring-

2019/csci8980/
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http://www-users.cselabs.umn.edu/classes/Spring-2017/csci8980/


Technical Course Goals

• Learn a “little” about ML and DL techniques

– Understand their scope of applicability

• Learn about one or more areas of computer 

systems in more detail

• Learn how ML/DL can benefit computer 

systems
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Non-Technical Course Goals

• Learn how to write critiques (blogs)

• Learn how to present papers and lead 
discussions

• Do a team research project

– Idea formation

– Writeup

– Experiment

– Present

– (fingers-crossed) publish a (workshop) paper 
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Major Topics

• Machine learning Introduction

• Databases

• Networking

• Scheduling

• Power management

• Storage

• Compilers/Architecture

• Fault tolerance

• IOT/mobile
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Course structure

• Grading …

– Presentations: 2 (1 big, 1 small) of them (10% each)

– Take-home mid-term: 20% 

– Final project: 30% 

– Written critiques (blogging): 10% 

• Approximately 2 of these per person

– Discussions: 20%
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Presentations

• Two presentations
– Presentation = 1 long paper; 1 short paper

• Give paper’s context and background

• Key technical ideas
– Briefly explain the ML technique used

• It’s relation to other papers or ideas

• Positive/Negative points (and why)

• long: 30 minutes max to leave time for discussion

• short: 15 minutes

• Keep it interesting!
– tough job: don’t want gory paper details nor total fluff 

– audience: smart CS/EE students and faculty
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Presentations (cont’d)

• Research/Discussion questions

– go beyond the claims in the paper

– limitations, extensions, improvements

– “bring up” any blog discussions

• You may find .ppt online BUT

– put it in your own words

– understand everything you are presenting
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Critiques/Blogging

• Brief overview

• Positives and negatives

– Hint: only one of these will be in the abstract ☺

• Discussion points

• Due before paper is presented so presenter 
has a chance to see it
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Projects

• Talk about ideas in a few weeks … 

– present a list of things that are useful, open to 

other ideas

• Work in a team of 2 or 3

• Large groups are fine 

– Plan C could be an issue

• Risk encouraged … and rewarded (even if you 

fall short)

13



Projects (cont’d)

• Implementation project

– Applying ML technique(s) to any systems area

• 1 page proposals will be due in early March

• Will present final results at the end
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Near-term Schedule

• web site

• Next three lectures+
– I will present, no blogging necessary

• Need volunteers for upcoming papers (see ? next to 
papers on the website)
– I will hand-pick “volunteers” if necessary ☺

– I will pick bloggers 
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http://www-users.cselabs.umn.edu/classes/Spring-2019/csci8980/


Admin Questions?
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Inspiration

• Jeff Dean’s NIPS 2017 keynote
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Next two lectures

• Basics of ML/DL

–See website for reading
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Machine Learning for Systems
and

Systems for Machine Learning

Jeff Dean
Google Brain team

g.co/brain

Presenting the work of many people at Google

http://g.co/brain


Google Confidential + Proprietary (permission granted  to share within NIST)

Machine Learning for Systems



Learning Should Be Used Throughout our 
Computing Systems

Traditional low-level systems code (operating systems, 
compilers, storage systems) does not make extensive use of 
machine learning today

This should change!

A few examples and some opportunities...
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Machine Learning for
Higher Performance Machine Learning 

Models



For large models, model parallelism is important



For large models, model parallelism is important

But getting good performance given multiple 
computing devices is non-trivial and non-obvious
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Reinforcement Learning for
Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model 
(trained via RL) gets 
graph as input + set 
of devices, outputs 
device placement for 
each graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Reinforcement Learning for
Higher Performance Machine Learning Models

Measured time 
per step gives 
RL reward signal

Placement model 
(trained via RL) gets 
graph as input + set 
of devices, outputs 
device placement for 
each graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972


Device Placement with Reinforcement Learning

Measured time 
per step gives 
RL reward signal

Placement model (trained 
via RL) gets graph as input 
+ set of devices, outputs 
device placement for each 
graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3 
image model

+19.3% faster vs. expert human for neural 
translation model

https://arxiv.org/abs/1706.04972


Device Placement with Reinforcement Learning

Measured time 
per step gives 
RL reward signal

Placement model (trained 
via RL) gets graph as input 
+ set of devices, outputs 
device placement for each 
graph node

Device Placement Optimization with Reinforcement Learning, 
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou, 
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3 
image model

+19.3% faster vs. expert human for neural 
translation model

Plug: Come see Azalia Mirhoseini’s talk on “Learning Device 
Placement” tomorrow at 1:30 PM in the Deep Learning at 
Supercomputing Scale workshop in 101B

https://arxiv.org/abs/1706.04972
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Learned Index Structures
not

Conventional Index Structures



B-Trees are Models

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Indices as CDFs

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Does it Work?

Type Config Lookup time Speedup vs. Btree Size (MB) Size vs. Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

Index of 200M web service log records

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Hash Tables

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208


Bloom Filters

Model is simple RNN
W is number of units in RNN layer
E is width of character embedding

~2X space improvement over
Bloom Filter at same false positive rate

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208
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Machine Learning for Improving 
Datacenter Efficiency



Collaboration between DeepMind and Google Datacenter operations teams.
See https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/ 

ML Control On ML Control Off

Machine Learning to Reduce Cooling Cost in Datacenters

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/
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Where Else Could We Use Learning?



Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, …

Heuristics have to work well “in general case”

Generally don’t adapt to actual pattern of usage

Generally don’t take into account available context



Anywhere We’re Using Heuristics To Make a 
Decision!
Compilers: instruction scheduling, register allocation, loop 
nest parallelization strategies, …

Networking: TCP window size decisions, backoff for 
retransmits, data compression, ...

Operating systems: process scheduling, buffer cache 
insertion/replacement, file system prefetching, …

Job scheduling systems: which tasks/VMs to co-locate on 
same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, …



Anywhere We’ve Punted to a User-Tunable 
Performance Option!
Many programs have huge numbers of tunable command-line 
flags, usually not changed from their defaults

--eventmanager_threads=16
--bigtable_scheduler_batch_size=8
--mapreduce_merge_memory=134217728
--lexicon_cache_size=1048576
--storage_server_rpc_freelist_size=128
...



Meta-learn everything
ML:

● learning placement decisions
● learning fast kernel implementations
● learning optimization update rules
● learning input preprocessing pipeline steps
● learning activation functions
● learning model architectures for specific device types, or that are fast 

for inference on mobile device X,  learning which pre-trained 
components to reuse, …

Computer architecture/datacenter networking design:

● learning best design properties by exploring design space 
automatically (via simulator)



Keys for Success in These Settings

(1) Having a numeric metric to measure and optimize
(2) Having a clean interface to easily integrate learning into 

all of these kinds of systems

Current work: exploring APIs and implementations
Basic ideas:

Make a sequence of choices in some context
Eventually get feedback about those choices
Make this all work with very low overhead, even in

distributed settings
Support many implementations of core interfaces



Conclusions
ML hardware is at its infancy.  
Even faster systems and wider 
deployment will lead to many 
more breakthroughs across a 
wide range of domains.

Learning in the core of all of our 
computer systems will make 
them better/more adaptive.  
There are many opportunities for 
this.

More info about our work at g.co/brain 

http://g.co/brain



