Special Topics: CSci 8980 Machine Learning in Computer Systems

Jon B. Weissman (jon@cs.umn.edu)

Department of Computer Science University of Minnesota

Introduction

• Introductions - all

- Who are you?
- What interests you and why are you here?

Introduction (cont'd)

- What is this course about?
 - machine learning
 - Interpreted broadly: learning from data to improve ...
 - computer systems
 - Interpreted broadly: compilers, databases, networks, OS, mobile, security, ... (not finding a boat in an image)

Confession

 If you took a ML course, you know more than me about it

- Interestingly ...
 - Took an AI course from Geoff Hinton
 - Did an M.S. on neural networks eons ago

Web Site

 <u>http://www-users.cselabs.umn.edu/classes/Spring-</u> 2019/csci8980/

Technical Course Goals

Learn a "little" about ML and DL techniques

 Understand their scope of applicability

• Learn about one or more areas of computer systems in more detail

 Learn how ML/DL can benefit computer systems

Non-Technical Course Goals

- Learn how to write critiques (blogs)
- Learn how to present papers and lead discussions
- Do a team research project
 - Idea formation
 - Writeup
 - Experiment
 - Present
 - (fingers-crossed) publish a (workshop) paper

Major Topics

- Machine learning Introduction
- Databases
- Networking
- Scheduling
- Power management
- Storage
- Compilers/Architecture
- Fault tolerance
- IOT/mobile

Course structure

- Grading ...
 - Presentations: 2 (1 big, 1 small) of them (10% each)
 - Take-home mid-term: 20%
 - Final project: 30%
 - Written critiques (blogging): 10%
 - Approximately 2 of these per person
 - Discussions: 20%

Presentations

- Two presentations
 - Presentation = 1 long paper; 1 short paper
- Give paper's context and background
- Key technical ideas

 Briefly explain the ML technique used
- It's relation to other papers or ideas
- Positive/Negative points (and why)
- long: 30 minutes max to leave time for discussion
- short: 15 minutes
- Keep it interesting!
 - tough job: don't want gory paper details nor total fluff
 - audience: smart CS/EE students and faculty

Presentations (cont'd)

- Research/Discussion questions
 - go beyond the claims in the paper
 - limitations, extensions, improvements
 - "bring up" any blog discussions
- You may find .ppt online BUT
 - put it in your own words
 - understand everything you are presenting

Critiques/Blogging

- Brief overview
- Positives and negatives

 Hint: only one of these will be in the abstract ©
- Discussion points
- Due before paper is presented so presenter has a chance to see it

Projects

- Talk about ideas in a few weeks ...
 - present a list of things that are useful, open to other ideas
- Work in a team of 2 or 3
- Large groups are fine
 Plan C could be an issue
- Risk encouraged ... and rewarded (even if you fall short)

Projects (cont'd)

Implementation project

- Applying ML technique(s) to any systems area

- 1 page proposals will be due in early March
- Will present final results at the end

Near-term Schedule

- web site
- Next three lectures+
 I will present, no blogging necessary
- Need volunteers for upcoming papers (see ? next to papers on the website)
 - I will hand-pick "volunteers" if necessary 😳
 - I will pick bloggers

Admin Questions?

Inspiration

• Jeff Dean's NIPS 2017 keynote

Next two lectures

Basics of ML/DL
 –See website for reading

Machine Learning for Systems and Systems for Machine Learning

Jeff Dean Google Brain team g.co/brain

Presenting the work of **many** people at Google

Machine Learning for Systems

Learning Should Be Used Throughout our Computing Systems

Traditional low-level systems code (operating systems, compilers, storage systems) **does not** make extensive use of machine learning today

This should change!

A few examples and some opportunities...

Machine Learning for Higher Performance Machine Learning Models

For large models, model parallelism is important

For large models, model parallelism is important

But getting good performance given multiple computing devices is non-trivial and non-obvious

Reinforcement Learning for Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning,

Reinforcement Learning for Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning,

Reinforcement Learning for Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning,

Device Placement with Reinforcement Learning

+19.3% faster vs. expert human for neural translation model

compared to expert-designed placement.

+19.7% faster vs. expert human for InceptionV3 image model

Device Placement Optimization with Reinforcement Learning,

Device Placement with Reinforcement Learning

translation model

+19.7% faster vs. expert human for InceptionV3 image model

Device Placement Optimization with Reinforcement Learning,

Learned Index Structures not Conventional Index Structures

B-Trees are Models

Indices as CDFs

Does it Work?

Index of 200M web service log records

Туре	Config	Lookup time	Speedup vs. Btree	Size (MB)	Size vs. Btree
BTree	page size: 128	260 ns	1.0X	12.98 MB	1.0X
Learned index	2nd stage size: 10000	222 ns	1.17X	0.15 MB	0.01X
Learned index	2nd stage size: 50000	162 ns	1.60X	0.76 MB	0.05X
Learned index	2nd stage size: 100000	144 ns	1.67X	1.53 MB	0.12X
Learned index	2nd stage size: 200000	126 ns	2.06X	3.05 MB	0.23X

Bloom Filters

Model is simple RNN *W* is number of units in RNN layer *E* is width of character embedding

~2X space improvement over Bloom Filter at same false positive rate

Machine Learning for Improving Datacenter Efficiency

Machine Learning to Reduce Cooling Cost in Datacenters

Collaboration between DeepMind and Google Datacenter operations teams. See <u>https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/</u>

Where Else Could We Use Learning?

Computer Systems are Filled With Heuristics

- Compilers, Networking code, Operating Systems, ...
- Heuristics have to work well "in general case"
- Generally don't adapt to actual pattern of usage
- Generally don't take into account available context

Anywhere We're Using Heuristics To Make a Decision! Compilers: instruction scheduling, register allocation, loop nest parallelization strategies, ...

Networking: TCP window size decisions, backoff for retransmits, data compression, ...

Operating systems: process scheduling, buffer cache insertion/replacement, file system prefetching, ...

Job scheduling systems: which tasks/VMs to co-locate on same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, ...

Anywhere We've Punted to a User-Tunable Performance Option!

Many programs have huge numbers of tunable command-line flags, usually not changed from their defaults

- --eventmanager_threads=16
- --bigtable_scheduler_batch_size=8
- --mapreduce_merge_memory=134217728
- --lexicon cache size=1048576
- --storage_server_rpc_freelist_size=128

Meta-learn everything

ML:

- learning placement decisions
- learning fast kernel implementations
- learning optimization update rules
- learning input preprocessing pipeline steps
- learning activation functions
- learning model architectures for specific device types, or that are fast for inference on mobile device X, learning which pre-trained components to reuse, ...

Computer architecture/datacenter networking design:

 learning best design properties by exploring design space automatically (via simulator)

Keys for Success in These Settings

 Having a numeric metric to measure and optimize
 Having a clean interface to easily integrate learning into all of these kinds of systems

Current work: exploring APIs and implementations Basic ideas:

Make a sequence of choices in some context Eventually get feedback about those choices Make this all work with very low overhead, even in distributed settings

Support many implementations of core interfaces

Conclusions

ML hardware is at its infancy. Even faster systems and wider deployment will lead to many more breakthroughs across a wide range of domains.

Learning in the core of all of our computer systems will make them better/more adaptive. There are many opportunities for this.

More info about our work at g.co/brain