
Special Topics:

CSci 8980

Machine Learning in Computer

Systems
Jon B. Weissman (jon@cs.umn.edu)

Department of Computer Science

University of Minnesota

Introduction

• Introductions – all

• Who are you?

• What interests you and why are you here?

2

Introduction (cont’d)

• What is this course about?

– machine learning
• Interpreted broadly: learning from data to improve …

– computer systems
• Interpreted broadly: compilers, databases, networks,

OS, mobile, security, … (not finding a boat in an image)

3

Confession

• If you took a ML course, you know more

than me about it

• Interestingly …

– Took an AI course from Geoff Hinton

– Did an M.S. on neural networks eons ago

4

Web Site

• http://www-

users.cselabs.umn.edu/classes/Spring-

2019/csci8980/

5

http://www-users.cselabs.umn.edu/classes/Spring-2017/csci8980/

Technical Course Goals

• Learn a “little” about ML and DL techniques

– Understand their scope of applicability

• Learn about one or more areas of computer

systems in more detail

• Learn how ML/DL can benefit computer

systems

6

Non-Technical Course Goals

• Learn how to write critiques (blogs)

• Learn how to present papers and lead
discussions

• Do a team research project

– Idea formation

– Writeup

– Experiment

– Present

– (fingers-crossed) publish a (workshop) paper

7

Major Topics

• Machine learning Introduction

• Databases

• Networking

• Scheduling

• Power management

• Storage

• Compilers/Architecture

• Fault tolerance

• IOT/mobile
8

Course structure

• Grading …

– Presentations: 2 (1 big, 1 small) of them (10% each)

– Take-home mid-term: 20%

– Final project: 30%

– Written critiques (blogging): 10%

• Approximately 2 of these per person

– Discussions: 20%

9

Presentations

• Two presentations
– Presentation = 1 long paper; 1 short paper

• Give paper’s context and background

• Key technical ideas
– Briefly explain the ML technique used

• It’s relation to other papers or ideas

• Positive/Negative points (and why)

• long: 30 minutes max to leave time for discussion

• short: 15 minutes

• Keep it interesting!
– tough job: don’t want gory paper details nor total fluff

– audience: smart CS/EE students and faculty

10

Presentations (cont’d)

• Research/Discussion questions

– go beyond the claims in the paper

– limitations, extensions, improvements

– “bring up” any blog discussions

• You may find .ppt online BUT

– put it in your own words

– understand everything you are presenting

11

Critiques/Blogging

• Brief overview

• Positives and negatives

– Hint: only one of these will be in the abstract ☺

• Discussion points

• Due before paper is presented so presenter
has a chance to see it

12

Projects

• Talk about ideas in a few weeks …

– present a list of things that are useful, open to

other ideas

• Work in a team of 2 or 3

• Large groups are fine

– Plan C could be an issue

• Risk encouraged … and rewarded (even if you

fall short)

13

Projects (cont’d)

• Implementation project

– Applying ML technique(s) to any systems area

• 1 page proposals will be due in early March

• Will present final results at the end

14

Near-term Schedule

• web site

• Next three lectures+
– I will present, no blogging necessary

• Need volunteers for upcoming papers (see ? next to
papers on the website)
– I will hand-pick “volunteers” if necessary ☺

– I will pick bloggers

15

http://www-users.cselabs.umn.edu/classes/Spring-2019/csci8980/

Admin Questions?

16

Inspiration

• Jeff Dean’s NIPS 2017 keynote

17

Next two lectures

• Basics of ML/DL

–See website for reading

18

Machine Learning for Systems
and

Systems for Machine Learning

Jeff Dean
Google Brain team

g.co/brain

Presenting the work of many people at Google

http://g.co/brain

Google Confidential + Proprietary (permission granted to share within NIST)

Machine Learning for Systems

Learning Should Be Used Throughout our
Computing Systems

Traditional low-level systems code (operating systems,
compilers, storage systems) does not make extensive use of
machine learning today

This should change!

A few examples and some opportunities...

Google Confidential + Proprietary (permission granted to share within NIST)

Machine Learning for
Higher Performance Machine Learning

Models

For large models, model parallelism is important

For large models, model parallelism is important

But getting good performance given multiple
computing devices is non-trivial and non-obvious

A B C D _
_ A B C

A B C D

A B C D

LSTM 1

LSTM 2

Attention

Softmax

A B C D _
_ A B C

A B C D

GPU1

GPU2

GPU3

GPU4 A B C D

LSTM 1

LSTM 2

Attention

Softmax

Reinforcement Learning for
Higher Performance Machine Learning Models

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Placement model
(trained via RL) gets
graph as input + set
of devices, outputs
device placement for
each graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972

Reinforcement Learning for
Higher Performance Machine Learning Models

Measured time
per step gives
RL reward signal

Placement model
(trained via RL) gets
graph as input + set
of devices, outputs
device placement for
each graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

https://arxiv.org/abs/1706.04972

Device Placement with Reinforcement Learning

Measured time
per step gives
RL reward signal

Placement model (trained
via RL) gets graph as input
+ set of devices, outputs
device placement for each
graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3
image model

+19.3% faster vs. expert human for neural
translation model

https://arxiv.org/abs/1706.04972

Device Placement with Reinforcement Learning

Measured time
per step gives
RL reward signal

Placement model (trained
via RL) gets graph as input
+ set of devices, outputs
device placement for each
graph node

Device Placement Optimization with Reinforcement Learning,
Azalia Mirhoseini, Hieu Pham, Quoc Le, Mohammad Norouzi, Samy Bengio, Benoit Steiner, Yuefeng Zhou,
Naveen Kumar, Rasmus Larsen, and Jeff Dean, ICML 2017, arxiv.org/abs/1706.04972

+19.7% faster vs. expert human for InceptionV3
image model

+19.3% faster vs. expert human for neural
translation model

Plug: Come see Azalia Mirhoseini’s talk on “Learning Device
Placement” tomorrow at 1:30 PM in the Deep Learning at
Supercomputing Scale workshop in 101B

https://arxiv.org/abs/1706.04972

Google Confidential + Proprietary (permission granted to share within NIST)

Learned Index Structures
not

Conventional Index Structures

B-Trees are Models

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Indices as CDFs

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Does it Work?

Type Config Lookup time Speedup vs. Btree Size (MB) Size vs. Btree

BTree page size: 128 260 ns 1.0X 12.98 MB 1.0X

Learned index 2nd stage size: 10000 222 ns 1.17X 0.15 MB 0.01X

Learned index 2nd stage size: 50000 162 ns 1.60X 0.76 MB 0.05X

Learned index 2nd stage size: 100000 144 ns 1.67X 1.53 MB 0.12X

Learned index 2nd stage size: 200000 126 ns 2.06X 3.05 MB 0.23X

Index of 200M web service log records

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Hash Tables

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Bloom Filters

Model is simple RNN
W is number of units in RNN layer
E is width of character embedding

~2X space improvement over
Bloom Filter at same false positive rate

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed Chi, Jeffrey Dean & Neoklis Polyzotis, arxiv.org/abs/1712.01208

https://arxiv.org/abs/1712.01208

Google Confidential + Proprietary (permission granted to share within NIST)

Machine Learning for Improving
Datacenter Efficiency

Collaboration between DeepMind and Google Datacenter operations teams.
See https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

ML Control On ML Control Off

Machine Learning to Reduce Cooling Cost in Datacenters

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

Google Confidential + Proprietary (permission granted to share within NIST)

Where Else Could We Use Learning?

Computer Systems are Filled With Heuristics

Compilers, Networking code, Operating Systems, …

Heuristics have to work well “in general case”

Generally don’t adapt to actual pattern of usage

Generally don’t take into account available context

Anywhere We’re Using Heuristics To Make a
Decision!
Compilers: instruction scheduling, register allocation, loop
nest parallelization strategies, …

Networking: TCP window size decisions, backoff for
retransmits, data compression, ...

Operating systems: process scheduling, buffer cache
insertion/replacement, file system prefetching, …

Job scheduling systems: which tasks/VMs to co-locate on
same machine, which tasks to pre-empt, ...

ASIC design: physical circuit layout, test case selection, …

Anywhere We’ve Punted to a User-Tunable
Performance Option!
Many programs have huge numbers of tunable command-line
flags, usually not changed from their defaults

--eventmanager_threads=16
--bigtable_scheduler_batch_size=8
--mapreduce_merge_memory=134217728
--lexicon_cache_size=1048576
--storage_server_rpc_freelist_size=128
...

Meta-learn everything
ML:

● learning placement decisions
● learning fast kernel implementations
● learning optimization update rules
● learning input preprocessing pipeline steps
● learning activation functions
● learning model architectures for specific device types, or that are fast

for inference on mobile device X, learning which pre-trained
components to reuse, …

Computer architecture/datacenter networking design:

● learning best design properties by exploring design space
automatically (via simulator)

Keys for Success in These Settings

(1) Having a numeric metric to measure and optimize
(2) Having a clean interface to easily integrate learning into

all of these kinds of systems

Current work: exploring APIs and implementations
Basic ideas:

Make a sequence of choices in some context
Eventually get feedback about those choices
Make this all work with very low overhead, even in

distributed settings
Support many implementations of core interfaces

Conclusions
ML hardware is at its infancy.
Even faster systems and wider
deployment will lead to many
more breakthroughs across a
wide range of domains.

Learning in the core of all of our
computer systems will make
them better/more adaptive.
There are many opportunities for
this.

More info about our work at g.co/brain

http://g.co/brain

