Integrated CPU and L2 Cache Voltage
Scaling using Machine Learning

Nevine AbouGhazaleh, Alexandre Ferreira, Cosmin Rusu, Ruibin Xu,
Frank Liberato, Bruce Childers, Daniel Mosse, Rami Melhem

Presenter: Minjun Wu
UMN CSCI 8980: Machine Learning in Computer Systems, Paper Presentation, 02/2019

M UNIVERSITY OF MINNESOTA

Driven to Discover®

Power in 2007

New chip design: MCD
- Multiple Clock Domain

Scenario:
- Larger chip “size”, more transistor and circuits
- No single timing in chip anymore, domains

MCD: Fine-grained PM opportunity

Old design:
- one chip, entirely, has single frequency
- select from different “mode”

New design opportunity:
- different domain has different frequency
- can adjust with application’s requirement

=> Reduce power consumption for inactive domain

The target, this paper

- Provide a fine-grained power management by MCD
- The management is done by Supervised Learning

PACSL: a Power-Aware Compiler-based approach using Supervised Learning
- Using performance counters monitoring system
- Training to collect policies offline
- Apply policies for dynamic frequency adjustment

PACSL, overview

system
description
L. training
BRjsatiiE \ l / applications

policy
Generator

Voltage | , performance
Settinggs Yo palicy I monitors

Figure 1. Information flow in PACSL

PACSL, overview

system
description
o training
objective \ /applications
policy
Generator Offline training “compile”

Online running
Voltage _ I performance) .
Settinggs DVS pOhcy monitors execute

Figure 1. Information flow in PACSL

counter/instn

How to describe apps?

gzip
I I |
B CPI N
MPl —— -~
i J e ‘ M
A 1 1 Ju ™ ek A
0 250 500 750

instn (x500K)

1000

counter/instn

equake

2.5 T T T

CPI
2 MPI —
LMMNMMH f
1 L - -
0.5 .

0 1 1 1

0 250 500 750

instn (x500K)

1000

counter/instn

N W OO N

—_

instn (x500K)

Figure 2. Variations in application phases throughout execution.

counter/instn

How to describe apps?

Hybrid (typical)

gzip
i T T CPI T]
MPl ———— +
0 A 2150 | ‘52)0) 7150‘

instn (x500K)

1000

counter/instn

CPU bound
equake
2.5 T T T
CPI
2 MPI -
U LAULE e
1 F - -
0.5 .
0 1 1 1
0 250 500 750

instn (x500K)

1000

counter/instn

Cache/Memory bound

art

o = N W d» OO0 O N

PO Y

250

500
instn (x500K)

4 ke

750

Figure 2. Variations in application phases throughout execution.

How to design this SL approach? [input]

Motivation: different application has different behavior:
- CPI: cycle per instruction
- L2PI: LLC access per instruction
- MPI: memory access per instruction

Different objective:
- Energy, Energy-Delay Product

System Configuration: LLC size, CPU etc.

How to design this SL approach? [output]

Policies:
- easy to apply at run time
- easy to understand

Propositional Rule:
“Under this condition, we should do that. ”

Design overview: more specific

- Two domains: CPU domain and LLC domain
- Offline stage:
a. analysis training applications
b. develop runtime policy (for diff objective)
- Runtime stage:
a. periodically monitor activity
b. determine best frequency based on policy

Design overview: more specific

PROCESSOR CHIP
L2 DOMAIN) /CPU DOMAIN

L2 Cache L1 Cache

Micro—

- - >{ controller I 1 Functional Units

]

Main Memory I

Figure 3. Example of an MCD processor design with integrated
DVS control.

y €
V_cpu

V_cachq¢ |

Offline stage: a. analysis training applications

Performance counter and frequency (“latency”):
- CPI, L2PI, MPI
- CPU domain frequency, L2C domain frequency

Some inputs are continuous, some are discrete:
- [c] CPI, L2PI, MPI, running program
- [d] CPU freq, L2C freq (choose from available set)

Offline stage: a. analysis training applications

Make continuous input discrete:
- CPI, L2PI, MPI: bins (same #entities each bin)
- running program: sampling
K samples, each have “size” instructions

Now, the input data will be:
Skij = {CPlyij, L2PIk;j, M Plkij, Myi;}
k: sample id, i: CPU freq, j: L2C freq, Mkij: objective (E or ED)

Offline stage: a. analysis training applications

Table 1. Eight training samples: CPI, L2PI and energy-delay product (ED) at all frequency combinations. O and 1 are the index of the CPI

and L2PI bins. discrete CPU/L2C freq
/

Fopa 0.5GHz 0.5GHz JF IGHZ TGHz

fs 0.5GHz IGHz 0.5GHz IGHz
s || CPI | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED
I 0 [T [200] 0 T [34] 1 [T [I8] I | T |I8
2 |l o | 1 242 o | 1 |48 | 1 | 1 223 1 | 1 |22
3l o] o |46 o| o 76| 1 | o 35| 1 | o [403
4 o | 1 274l o | 1 |48 1 | 1 [252] 0 | 1 |25
: s |l o | o [473] o | o |86 1| 1 [430] 0o | 0 |43
sample id 6 g1 | Tw|330 o | 1 [sssw 1 | 1 [300] 1 | 1 |317
A 1 | o3|l 0| o |64 0 [327] 1 | o |33
1 | o N4o1] o | o [709] IN 0 [363] 1 | 0 |37

CPl bin 0 and 1 L2PI bin 0 and 1 Objective number

Offline stage: a. analysis training applications

How to describe the action?
- A action table! (ST, state table)
- By current status: CPI, L2PI, MPI; tell me what
CPU/L2C frequency should | set in next stage?

Method:
Choose the best freq for each class of “code sections”

Acc|C Pl ||[L2P Iiij][M Plkij) 4] [5][z][y]+ 3kay

7
best Metrics in each <x,y> of code section <k>

Offline stage: a. analysis training applications

Table 1. Eight training samples: CPI, L2PI and energy-delay product (ED) at all frequency combinations. O and 1 are the index of the CPI
and L2PI bins.

Jeon 0.5GHz 0.5GHz 1GHz 1GHz
fs 0.5GHz 1GHz 0.5GHz 1GHz
S CPI | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED
1 0 1 200 0 1 354 1 1 183 1 1 187
2 0 1 242 0 1 428 1 1 225 1 1 226
. 0 0 436 0 0 768 1 0 395 1 0 403
-+ 0 1 274 0 1 481 1 1 252 0 1 250 |
5 0 0 473 0 0 826 1 1 430 0 0 430
6 1 1 330 0 1 588 1 1 309 1 1 317
7 1 0 361 0 0 642 1 0 327 1 0 339
8 1 0 401 0 0 709 1 0 1 0 374

Offline stage: a. analysis training applications

Method (cont’):
Use Accumulation to get the best one:
ST|CPlIki;||L2PIkis)[M Plrij|i]|J]

- min<x,y> of ACC[CPIkw] [LQPIIWJ] [Mplkw] [Z] []] [.CE] [y]

(I show you how it works, but we will discuss it later)

Table 1. Eight training samples: CP - = - P T * == dex of the CPI
and L2P bins. 1 Acc|CPlyi;]||[L2P 1 || M Plkij|[t][7][x] |[y] + =My
Jeon 0.5GHz 0.5GHz 1GHz 1GHz
fs 0.5GHz 1GHz 0.5GHz 1GHz
S CPI | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED || CPI | L2PI | ED
1 0 | 200 0 1 354 1 1 183 1 1 187
2 0 I 242 0 I 428 1 1 223 1 1 226
3 0 0 436 0 0 768 1 0 395 1 0 403
4 0 1 274 0 1 481 1 1 252 0 1 250 |
5 0 0 473 0 0 826 1 1 430 0 0 430
6 1 1 330 0 1 588 1 1 309 1 1 317
7 1 0 361 0 0 642 1 0 327 1 0 339
8 1 0 401 0 0 709 1 0 1 0 374
i=0.5 j=0.5 <X, y> <X, y> <X, y> <X, y>
CPI L2PI 0.5,0.5 0.5, 1 1,0.5 1,1
Table 2. Constructed ST from samples in Table 1.
0 0 - - 395+430 | - chpu=0-5C}HZ ffcpu=1GJIjZ
CPI | L2PI $=0.5 s=1 $=0.5 s=1
0 1 - - 183+223 | 250 - 0 0 1705 || 1/05 - -
0 1 1/1 1/1 - 1/1
1 0 - - 327+363 | - 1 0 1/0.5 - 105 | 1/0.5
1 1 1/0.5 - 1/1 1/0.5
1 1 - - 309 -

A8

Offline stage: b. develop runtime policy

Problem for Table 2: not all states are covered
- Need to fill in the state-action and gen policy

They tried many ML method, then choose
“propositional rule”
For detall, they use "RIPPER” and “IREP algorithm”

Offline stage: b. develop runtime policy

“propositional rule™:

select one positive example, e;

v_small % Céé/sﬁ//
A
NN
medium Clas asss
]
large l?lllellgl“ gllallslsu
LI L
v_arge
red orange wellow green blue wolet

Figure 1: Discrimination on attributes and values

construct the set of all conjunctive expressions
that cover e and no negative example in E-;
choose the "best' expression, x, from this set;

add x as a new disjunctof the concept;
remove all positive examples covered by x

until there are no positive examples left;

The "best' expression is usually some compromise
between the desire to cover as many positive
examples as possible and the desire to have as

compact and readable a representation as possible.

ref: http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/06prop.html

A8

Incremental reduced-error pruning

Initialize E to the instance set

Until E is empty do

(I think) like validation data:
if not passed for validation,

Split E into |[Grow and Prune in the ratio 2:1

then repeat

For each class C for which Grow contains an instance

Use basic covering algorithm to create best perfect rule

foxr C
Calculate w(R):

worth of rule on Prune

and w(R-) : worth of rule with final condition

omitted

If w(R-) < w(R), prune rule and repeat previous step

From the rules for the different classes,

select the one

that’'s worth most (i.e. with largest w(R))

Print the rule

Remove the instances covered by rule from E

Continue

ref: http://www.csee.usf.edu/~lohall/dm/ripper.pdf

A8

Incremental reduced-error pruning
Modified for RIPPER

- Order classes according to|increasing prevalence
(@ s 2w o5 B
find rule set to separate C, from other classes
TREE | PE@E=0, ; Hemg=ter s » w 7l
remove all instances learned by rule set
find rule set to separate C, fromcC,, ..., C,

C, remains as default class

ref: http://www.csee.usf.edu/~lohall/dm/ripper.pdf

A8

Offline stage: b. develop runtime policy

As result: Table 3. Example of a policy to minimize energy-delay product.
Rule

if (L2PI > 1) and (CPI < 0) then fg=1GHz
else f4=0.5GHz |
fepu=1GHz

W N =

Table 2. Constructed ST\from samples in Table 1.
fcpuzo- GHz fcpu=1GHZ

CPI | L2PI || f5=0.5 [\ fs=1 | fs=0.5 | fs=1
0 0 1/0.5 |Y1/0.5 - -
0 1 171 1/1 - 1/1
1 0 1/0.5 - 1/0.5 | 1/0.5
1 1 1/0.5 - 171 | 105

Offline learning stage summary

- PACSL sample data in training app
- PACSL generate ST based on best Metrics
- PACSL generate simple rules based on SL

Before we go to evaluation part.. some design choices

Before evaluation

Training app selection:
- more coverage on ST (more CPI/L2PI/MPI variance)

Sample size, interval:
- smaller: fine-grained, more accurate and overhead

Evaluation

- based on Simulator with MCD extension
(Simplescalar, Wattch)

- tools for propositional rules (JRip)

- break benchmark into training/testing set (exclusive)

- sample size: 500K instructions

E.D normalized to NPM

Resu It MPI is not that significant, but huge reduction achieved

| @ Independent DVS B PACSL-w/0 mpi OPACSL-w/mpi |
1_
0.75 - 1
0.5 - I
0.25 - I
0- o -
b > b7 7] it] = = o = = 7] i L (8]
g s 3 &8 Eg g EET f2EizgiRfifigeoi
3] [=] Q. (1]
e £ UL = =] © = £ o Y = £ ®
I & = | | | in = G o > = £ £ 2 a 4
£ £ = 7] o o = © o
- b i) i) © O =] o
® B Mibench™ SPEC

Figure 5. Energy-delay product for SPEC2000 and Mibench benchmarks when using Independent DVS versus PACSL.

different metrics: with delay bound, also demonstrate

Result

B PACSL

@ Independent DVS

1.7

T
S Lo
I~

o

NN ©3 pazZijewlou *

Jads-fae
asimdni
LIS
puBL
esall
sean|
|abeb
ayenba
uoa
Ayelao
1sde
n|dde

duwie

Iw-Bae
YIuAs.
aule|

aua” fBadl
2ap” Badl
15Un” wish

157 wsh

Mibench

AU
W
ensylip
ZE21D
aua woadpe

Jap-wadpe

Figure 6. Energy-delay product when optimizing energy with delay bound.

different machine configuration: demonstrated

Result

B PACSL

O Independent DVS

Ad

N 03 pazijeuwou

Jads-bae
asimdna
LUIMS
pubu
esaLl

sean|

SPEC

|a6jeb
axenha
uoa
Ale.o
Isde
n|dde

duiue

aua” fadf

2ap” fAad(

Jua” wadpe

Jap-wadpe

Figure 7. Energy-delay product for policies running on system with configuration Config B in Table 4.

Result:

longer interval will reduce the gap, less granularity

1.25
- Eindependent DVS B PACSL
o 1 4
Z
S
T 0.75 -
N
G
£ 05-
o
c
Q 0.25 -
w
0
100 500 2000 100 | 500 2000
Mibench SPEC'00

interval size (K insn)

Figure 8. Average energy-delay product at different DVS control-
interval sizes (using Config A).

table states

complex app has more states, similar contribute less

1000 A
I # distinctive states
750 1 —e—# new states
500 -
250 -

=
©

gcc
gzip
bzip
twolf
mesa
quake
parser
vpr
lame
dijkstra
adpcm

@
training benchmarks

Figure 9. ST coverage.

Discussion, my opinion

Strength:

- Fine-grained new design provides opportunity for
power optimization (the first ML work for MCD).
Since the system is more and more complicated
(more layers, controls), this opportunity increases.

- The ML method can capture the app requirement,
generate policy from system behavior and apply to
system. A good example showing “down to the
ground” for ML in system design.

Discussion, my opinion

Weakness:

- Need to demonstrate current app state can be used
to predict future state. | think this paper tries to
cluster applications, and identify them at early
stages. Then a proof for no “state intersection” is
required (hard because program is not predictable).

- The ST generation is not clear enough, and it's
stateless (not like stochastic process, RNN). Is there
any better way to describe the best metric like DP?

Thanks!

Al

UNIVERSITY OF MINNESOTA

Driven to Discover®
Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.

Why frequency with power?

- “higher frequency, run faster, work more”

- Pcpu =Pd‘yn +Psc+-Ple.ak.

- den — Csz

- higher voltage will charge capacitor faster, then less
latency (circuit design perspective)

- (Moore’s law is another thing)

- DVS: dynamic voltage scaling

What is DVS? relationship with MCD??

- Even though you can control both supply voltage and
clock frequency, they are not independent.

- Less voltage will lead less frequency for longer delay

- adjust voltage and clock will lead different overhead.
adjust voltage will be slower in “effective”.

Why not as low frequency as possible?

- Low frequency will decrease power consumption, but
make execution time longer.

Why not online ML approach?

- They tried online ML approach, but the effectiveness
IS not as good as offline one. Also the runtime

overhead is bigger.
- ref: https://cs.pitt.edu/PARTS/presentation/Hipeac 08.pdf

Many ML approach, why this one?

Why rules?

- they tested many, this one is the best.
why discrete?

- They didn’'t mention.

why accumulation? not average?

- | think it's a mistake..

