
Integrated CPU and L2 Cache Voltage
Scaling using Machine Learning

Nevine AbouGhazaleh, Alexandre Ferreira, Cosmin Rusu, Ruibin Xu,
 Frank Liberato, Bruce Childers, Daniel Mossé, Rami Melhem

Presenter: Minjun Wu
UMN CSCI 8980: Machine Learning in Computer Systems, Paper Presentation, 02/2019

Power in 2007

New chip design: MCD
- Multiple Clock Domain

Scenario:
- Larger chip “size”, more transistor and circuits
- No single timing in chip anymore, domains

MCD: Fine-grained PM opportunity

Old design:
- one chip, entirely, has single frequency
- select from different “mode”

New design opportunity:
- different domain has different frequency
- can adjust with application’s requirement

=> Reduce power consumption for inactive domain

The target, this paper

- Provide a fine-grained power management by MCD
- The management is done by Supervised Learning

PACSL: a Power-Aware Compiler-based approach using Supervised Learning

- Using performance counters monitoring system
- Training to collect policies offline
- Apply policies for dynamic frequency adjustment

PACSL, overview

PACSL, overview

Offline training “compile”

Online running
“execute”

How to describe apps?

How to describe apps?
Hybrid (typical) CPU bound Cache/Memory bound

How to design this SL approach? [input]

Motivation: different application has different behavior:
- CPI: cycle per instruction
- L2PI: LLC access per instruction
- MPI: memory access per instruction

Different objective:
- Energy, Energy-Delay Product

System Configuration: LLC size, CPU etc.

How to design this SL approach? [output]

Policies:
- easy to apply at run time
- easy to understand

Propositional Rule:
“Under this condition, we should do that. ”

Design overview: more specific

- Two domains: CPU domain and LLC domain
- Offline stage:

a. analysis training applications
b. develop runtime policy (for diff objective)

- Runtime stage:
a. periodically monitor activity
b. determine best frequency based on policy

Design overview: more specific

Offline stage: a. analysis training applications

Performance counter and frequency (“latency”):
- CPI, L2PI, MPI
- CPU domain frequency, L2C domain frequency

Some inputs are continuous, some are discrete:
- [c] CPI, L2PI, MPI, running program
- [d] CPU freq, L2C freq (choose from available set)

Offline stage: a. analysis training applications

Make continuous input discrete:
- CPI, L2PI, MPI: bins (same #entities each bin)
- running program: sampling

K samples, each have “size” instructions

Now, the input data will be:

k: sample id, i: CPU freq, j: L2C freq, Mkij: objective (E or ED)

Offline stage: a. analysis training applications

CPI bin 0 and 1 L2PI bin 0 and 1 Objective number

sample id

discrete CPU/L2C freq

Offline stage: a. analysis training applications

How to describe the action?
- A action table! (ST, state table)
- By current status: CPI, L2PI, MPI; tell me what

CPU/L2C frequency should I set in next stage?

Method:
Choose the best freq for each class of “code sections”

best Metrics in each <x,y> of code section <k>

Offline stage: a. analysis training applications

Offline stage: a. analysis training applications

Method (cont’):
Use Accumulation to get the best one:

= min<x,y> of

(I show you how it works, but we will discuss it later)

i = 0.5 j = 0.5 <x, y> <x, y> <x, y> <x, y>

CPI L2PI 0.5, 0.5 0.5, 1 1, 0.5 1, 1

0 0 - - 395+430 -

0 1 - - 183+223 250

1 0 - - 327+363 -

1 1 - - 309 -

Offline stage: b. develop runtime policy

Problem for Table 2: not all states are covered
- Need to fill in the state-action and gen policy

They tried many ML method, then choose
“propositional rule”

For detail, they use “RIPPER” and “IREP algorithm”

Offline stage: b. develop runtime policy

“propositional rule”:

The `best' expression is usually some compromise
between the desire to cover as many positive
examples as possible and the desire to have as
compact and readable a representation as possible.

ref: http://www.cse.unsw.edu.au/~billw/cs9414/notes/ml/06prop/06prop.html

ref: http://www.csee.usf.edu/~lohall/dm/ripper.pdf

(I think) like validation data:
if not passed for validation,
then repeat

ref: http://www.csee.usf.edu/~lohall/dm/ripper.pdf

Offline stage: b. develop runtime policy

As result:

Offline learning stage summary

- PACSL sample data in training app
- PACSL generate ST based on best Metrics
- PACSL generate simple rules based on SL

Before we go to evaluation part.. some design choices

Before evaluation

Training app selection:
- more coverage on ST (more CPI/L2PI/MPI variance)

Sample size, interval:
- smaller: fine-grained, more accurate and overhead

Evaluation

- based on Simulator with MCD extension
(Simplescalar, Wattch)

- tools for propositional rules (JRip)
- break benchmark into training/testing set (exclusive)
- sample size: 500K instructions

Result:
MPI is not that significant, but huge reduction achieved

Result:
different metrics: with delay bound, also demonstrate

Result:
different machine configuration: demonstrated

Result:
longer interval will reduce the gap, less granularity

Result:
complex app has more states, similar contribute less

Discussion, my opinion
Strength:

- Fine-grained new design provides opportunity for
power optimization (the first ML work for MCD).
Since the system is more and more complicated
(more layers, controls), this opportunity increases.

- The ML method can capture the app requirement,
generate policy from system behavior and apply to
system. A good example showing “down to the
ground” for ML in system design.

Discussion, my opinion
Weakness:

- Need to demonstrate current app state can be used
to predict future state. I think this paper tries to
cluster applications, and identify them at early
stages. Then a proof for no “state intersection” is
required (hard because program is not predictable).

- The ST generation is not clear enough, and it’s
stateless (not like stochastic process, RNN). Is there
any better way to describe the best metric like DP?

Thanks!

Why frequency with power?

- “higher frequency, run faster, work more”
-
-
- higher voltage will charge capacitor faster, then less

latency (circuit design perspective)
- (Moore’s law is another thing)
- DVS: dynamic voltage scaling

What is DVS? relationship with MCD?

- Even though you can control both supply voltage and
clock frequency, they are not independent.

- Less voltage will lead less frequency for longer delay
- adjust voltage and clock will lead different overhead.

adjust voltage will be slower in “effective”.

Why not as low frequency as possible?

- Low frequency will decrease power consumption, but
make execution time longer.

Why not online ML approach?

- They tried online ML approach, but the effectiveness
is not as good as offline one. Also the runtime
overhead is bigger.

- ref: https://cs.pitt.edu/PARTS/presentation/Hipeac_08.pdf

Many ML approach, why this one?

Why rules?
- they tested many, this one is the best.

why discrete?
- They didn’t mention.

why accumulation? not average?

- I think it’s a mistake..

