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What is device placement

● Consider a TensorFlow computational graph G, which 
consists of M operations {o1,o2, …, oM }, and a list of D 
available devices.

● A placement P = {p1,p2, …, pM} is an assignment of an 
operation oi to a device pi.
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Why device placement

● Trend toward many-device training, bigger models, larger 
batch sizes

● Growth in size and computational requirements of training 
and inference
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Typical approaches

● Use a heterogeneous distributed environment with a mixture 

of many CPUs and GPUs
● Often based on greedy heuristics
● Require deep understanding of devices: bandwidth, latency 

behavior
● Are not flexible enough and does not generalize well 
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ML for device placement

● ML is repeatedly replacing rule based heuristics

● RL can be applied to device placement

– Effective search across large state and action spaces to 
find optimal solution

– Automatic learning from underlying environment only 
based on reward function 
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RL based device placement
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Problem formulation

: expected runtime

: trainable parameters of policy

: runtime

: policy

: output placements
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Training with REINFORCE

● Learn the network parameters using Adam optimizer based 
on policy gradients computed via the REINFORCE equation:

● Use K placement samples to estimate policy gradients & use 
a baseline term B to reduce variance:
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Model architecture
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Challenges

● Vanishing
● Exploding gradient issue
● Large memory footprints
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Distributed training
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Experiments 

● Recurrent Neural Language Model (RNNLM)
● Neural Machine Translation with attention mechanism(NMT)
● Inception-V3
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Learned placement on NMT
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NMT end-to-end runtime
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Learned placement on Inception-V3
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Inception-V3 end-to-end runtime
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Profling on NMT
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Profling on Inception-V3
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Profling on Inception-V3
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Running times (in seconds)
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Summary

● Propose a RL model to optimize device placements for 
neural networks

● Use policy gradient to learn parameters
● Policy finds non-trival assignment of operations to devices 

that outperform heuristic approaches 
● Profiling of results show policy learns implicit trade-offs 

between computation and communication in hardware
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