
University of Minnesota | Networking Lab

DEEPCACHE: A Deep Learning Based
Framework For Content Caching

University of Minnesota | Networking Lab

Content Caching is Important!

2

TIME = X

TIME = 10X

Cache
Server

Origin
Server

reduces user perceived latency

increases user’s QoE

reduces costs

Alireza

But caching is NOT easy!

University of Minnesota | Networking Lab

Caching Policy

Caching Is Not Easy

3

Resources (e.g. storage space) at Cache Servers are limited

All content objects cannot be cached at a cache server !

1. what content to cache?
2. when to cache?
3. what happens when cache is full?

Least Recently Used (LRU) and its variants
Least Frequently Used (LFU) and its variants
Static Caching (or prefetching)

Popular examples include:
Reactive

Proactive

Caching Decisions include:

Content agnostic caching node should make precise cache decisions

University of Minnesota | Networking Lab

Heterogeneity in content (reusable info.) types and sizes
(e.g. web pages vs. Videos vs. music …)

Content-object requests patterns frequently change over time
(thus content-object popularity also changes)

Accounting for diversity in content life spans
(short-lived vs. long-lived content-objects)

Handling burstiness and non-stationary nature of real-world
content-object requests

Challenges in Caching

4

University of Minnesota | Networking Lab

Although reactive caching acts faster, it ignores future object
popularity.

While proactive caching accounts for possible future object
popularity, it assumes object requests patterns are stationary.

Drawbacks of Existing Approaches

5

University of Minnesota | Networking Lab

Although reactive caching acts faster, it ignores future object
popularity.

While proactive caching accounts for possible future object
popularity, it assumes object requests patterns are stationary.

Adaptive caching policies (e.g. TTL-based) handle the
heterogeneity and burstiness of object requests, but still rely
on the history of object requests and ignores possible future
object request patterns.

Drawbacks of Existing Approaches

6

Existing approaches don’t generalize to different conditions

No Single Caching Policy Likely Works Well in All Settings!

University of Minnesota | Networking Lab

Is it possible to develop a self-adaptive and data-driven

caching mechanism (via deep learning) that is able to

cope with diverse and time-varying content object

characteristics (e.g. arrival patterns, popularity, life spans)

and improve cache efficiency?

Goal

7

AI comes to rescue!

input features? interpret and apply?how to model?

?
?

?

University of Minnesota | Networking Lab

Understanding content object characteristics is key to building any
caching mechanism.

If one can accurately predict vital content object characteristics
ahead of time, cache efficiency can be improved.

The Rationale…

8

This work focuses on predicting content object
popularity ahead of time such that caching can be

improved (e.g. by prefetching them).

Does this make sense? El-Clasico example ..

University of Minnesota | Networking Lab

A Naïve Simple Approach

9

ML Model
(black-box)

Goal: Predict which object will be requested (“next-item prediction”)

Input

Easy to understand

Which object will be requested and at what time will in general likely be random!

Will be hard to predict accurately due to the inherent randomness of request processes

time series of object requests

A

t1

B

t2

A

t3

C

t4

Output

A

B

C

t5

?

University of Minnesota | Networking Lab

It’s Better to Predict …

10

ML Model
(black-box)

Goal: Predict Content Object Popularity in Next Time Window

Input

Prob. of an [M] obj. being req.
in the next [N] timesteps

Also easy to understand

Model does not explicitly account for possible object request correlations

Model may also learn erroneous “relationships” between object requests

time series of object requests

A

t1

B

t2

A

t3

C

t4

Output

obj prob1 prob2 … probN

0.4 0.3 … 0.1

0.2 0.3 … 0.4

0.1 0.1 … 0.2

… … … ... …

A

B

C

t5 t6 T5+N

University of Minnesota | Networking Lab

Can We Do Better?

11

ML Model
(black-box)

Goal: Predict Content Object Popularity within Next Time Window
with fixed prob. vector by accounting for possible object correlation

Input Output

time series of all object
features at ti

obj prob1 prob2 … probN

0.4 0.3 … 0.1

0.2 0.3 … 0.4

0.1 0.1 … 0.2

… … … ... …

A

B

C

Prob. of an [M] obj. being req.
in the next [N] timesteps

Still easy to understand

Fixed number of content objects, new ones cannot be added

obj Feat.
…

…

…

… …

t1

A

B
C

obj Feat.
…

…

…

… …

t2

A

B
C

obj Feat.
…

…

…

… …

t3

A

B
C

Able to disambiguate correlation/independence among objects within time window

t5 t6 T5+N

But may still erroneously infer/miss relationships among objects beyond time window

University of Minnesota | Networking Lab

P(𝑊𝑊𝐴𝐴
1−6) = 0.5P(𝑊𝑊𝐴𝐴

2−7) = 0.5

Input: Given a time series of object requests
For every object (say A)

Compute the probability of object A in W (i.e. # req. for A / total req.)

Slide the window by step size S
Repeat till end of time series;

We get a series of sequence of probabilities for object A

Prop. Approach – Sequence Construction

12

t1t2t3

CBABAABCACACABCA

t4t14t15t16 t5t6t7t8t9t10t11t12t13

…

Configurable Parameters
Window size (W) = 6

Step size (S) = 3

Construct sequences of probabilities for all content objects from a
large synthetic set of content objects having diverse characteristics

University of Minnesota | Networking Lab

Model the problem as Seq2Seq learning
Seq2Seq modeling was first developed for machine translation but has
proven to be a powerful tool in other domains as well.

Train the model using sequences generated from the large
corset pus of synthetic object requests

Once modeled, given a sequence of probabilities of an object,
model is able to predict the future probabilities (i.e. popularity)
of the object at various time steps.

Once the future probabilities of all the objects are known, one
can apply a caching policy (e.g. pick top K popular objects)

13

Proposed approach – Seq2Seq Model

University of Minnesota | Networking Lab

Why Choose Seq2Seq?
Enable jointly predicting several characteristics of objects together

Provide flexibility in terms of predicting varieties of outputs together
with possibly varying input/output sequence lengths
Can predict object’s popularity over multiple timesteps in the future
Can also predict sequential patterns among objects
Can classify sequence into pre-defined categories

For seq2seq modeling, LSTM-based models are the most successful
Can capture any long-term and short-term dependency among objects
Designed to avoid vanishing and exploding gradient problems when
building deep layer neural network models

14

University of Minnesota | Networking Lab

Content Popularity Prediction Model

15

• LSTM Encoder-Decoder takes a sequence of objects represented by their input feature
vectors and predicts the next k outputs associated with each object.

• In our case:
• Input feature vectors are defined as object probabilities of occurrence computed based on

a pre-defined time (or sequence length) window.
• Output is defined as a sequence of next k future probabilities associated with each object.

• Once trained, LSTM Encoder-Decoder can predict (for example) next k hourly
probabilities for each object that can be utilized in making cache policy decisions.

University of Minnesota | Networking Lab

DEEPCACHE

A Framework that leverages state-of-the-art ML algorithms to improve cache
efficiency

Predict object characteristics to develop new (or enhance existing) caching strategies
→ paving way to develop “smart” caching policies

Object
Characteristics

Predictor
CacheCaching

PolicyFuture
object

characteristics

time series of
object requests X

integral
operator

smart caching policy

16

University of Minnesota | Networking Lab

A Case for DEEPCACHE

17

Object
“popularity”

Predictor
CacheCaching

PolicyFuture
object

“popularities”

time series of
object requests X

integral
operator

Seq2Seq Prediction using
LSTM Encoder-Decoder Model

(i.e. Content Popularity
Prediction Model)

Generate
“fake object requests”
for objects popular in

future Simple merge operator
(original + fake requests)

Traditional
LRU/k-LRU

caches

University of Minnesota | Networking Lab

Synthetic Workload Generation & Evaluation Settings

Dataset 1 (D1):
50 objects, 80K requests
object popularities follow (varying)
Zipf distributions, 6 intervals
Cache size = 5

Dataset 2 (D2) realistic workload:
1425 objects, 2M requests
Generalized Zipf distribution to generate object popularities
Varying object life span (# days object seen)
Each object’s request arrival process within a day follows a diurnal pattern
Daily access rate of each object follows linear/non-linear function,
requests for obj i diminishes each day
Cache size = 150

D2: Object Popularity

D2: Hourly Access Ratio

D2: Histogram of Object Life Span

18

University of Minnesota | Networking Lab

Performance of Content Popularity Prediction
LSTM performs quite well in tracking the original

time series over the predicted time-series at
multiple future time steps

LSTM performs well for predicting <1, 12, 24> hour(s) ahead of time
Figure shows prediction in comparison with original values over a time series of ~ 10 days

Prediction Accuracy

Mean-squared-error (MSE) and
mean-absolute-error (MAE) for
both datasets are low, i.e. strong
performance of our LSTM model.

19

University of Minnesota | Networking Lab

Cache Hit Efficiency in DEEPCACHE

D1: LRU D2: LRU D2: k-LRU

For both datasets D1 and D2:

DEEPCACHE-enabled-LRU outperforms Traditional LRU. Similar observation for k-LRU.

P-Optimal shows performance with 100% content popularity prediction accuracy.

20

DEEPCACHE is able to attain the optimal performance!

University of Minnesota | Networking Lab

DEEPCACHE Framework, a framework that applies state-of-the-
art machine learning tools to the problem of content caching

Cache prediction problem using seq2seq modeling

Simple yet effective cache policy that generates “fake requests”
to interoperate with traditional caching policies

Evaluation on synthetic datasets (that emulates realistic
workloads) show DEEPCACHE enabled caches significantly
outperforms caches without DEEPCACHE

Conclusion

21

University of Minnesota | Networking Lab

Thank you!

Questions?

22

	DEEPCACHE: A Deep Learning Based�Framework For Content Caching
	Content Caching is Important!
	Caching Is Not Easy
	Challenges in Caching
	Drawbacks of Existing Approaches
	Drawbacks of Existing Approaches
	Goal
	The Rationale…
	A Naïve Simple Approach
	It’s Better to Predict …
	Can We Do Better?
	Prop. Approach – Sequence Construction
	Proposed approach – Seq2Seq Model
	Why Choose Seq2Seq?
	Content Popularity Prediction Model
	DEEPCACHE
	A Case for DEEPCACHE
	Synthetic Workload Generation & Evaluation Settings
	Performance of Content Popularity Prediction
	Cache Hit Efficiency in DEEPCACHE
	Conclusion
	Thank you!

