CrystalBall: Statically Analyzing Runtime Behavior via Deep Sequence Learning

Stephen Zekany Daniel Rings Nathan Harada Michael A. Laurenzano Lingjia Tang Jason Mars

Introduction

- > Why analyze runtime behavior?
- ➢ How to analyze it for software lifecycle? Hot Paths (1 in a million)
- Path profiling:
 - Dynamic Profiling: Digital Mars C++
 - Group functions that call each other
 - Static Profiling:

Predict runtime behavior before the program runs

Applications - Branch Prediction, Trace formation, Basic Block placement optimization

Why not Dynamic Profiling?

- Needs representative production environment
- Computationally Expensive
- In for a penny, in for a pound

Static Profiling – CrystalBall

- Program behavior is latent within instructions
- Higher the quality of static analysis => better runtime prediction
- Can leverage large amount of data
- Language independent uses Intermediate Representation (IR)
- ➢ IR − Semantic + Low level Ops

Compilers - GCC, LLVM (Low Level Virtual Machine)

Sequence of blocks => use RNN

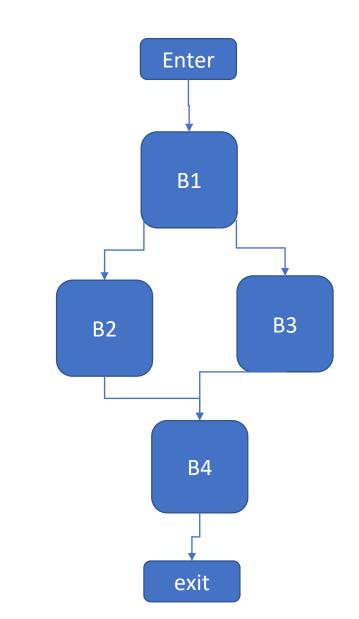
Intermediate Representation

```
C++ Function -
   int mul_add(int x, int y, int z){
        return x * y + z;
IR -
   define i32 @mul add(i32 %x, i32 %y, i32 %z) {
        entry:
               %tmp = mul i32 %x, %y
               %tmp2 = add i32 %tmp, %z
               ret i32 %tmp2
    }
```

Basic Block

Source Code:	
w = 0;	Basic Blocks:
x = x + y;	w = 0;
	$\mathbf{x} = \mathbf{x} + \mathbf{y};$
y = 0;	y = 0;
if (x > z) {	if (x > z)
y= x;	
x++;	y= x;
	X++;
}	
else{	y = z;
y = z;	z++;
z++;	
}	
	w = x + z;
$(M) - V \perp 7$	

w = x + z;



B1

B2

B3

B4

Ball Larus Path Profiling

- Convert each function to Directed Acyclic Graph (DAG)
- Back edges are removed in DFS
- Unique sum of edge weight for a pat

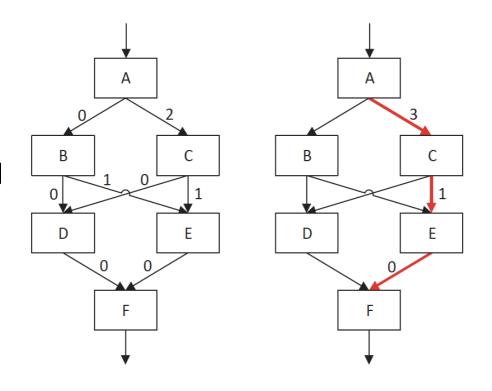
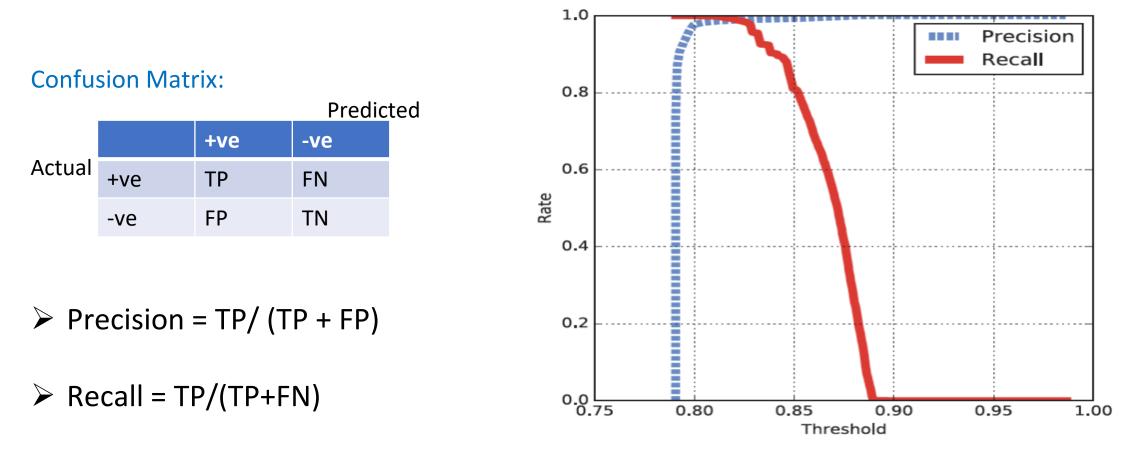


Fig. 1: Example of function path enumeration using Ball-Larus algorithm (left - edge weights between basic blocks, right - example of path reconstruction)

Performance Metrics



F1 – measure = 2 * Precision * Recall /(Precision + Recall)

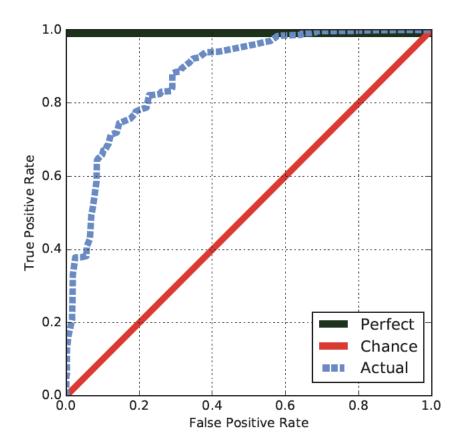
Solution – AUROC (Area Under ROC)

TPR (Recall) = TP/ (TP + FN)

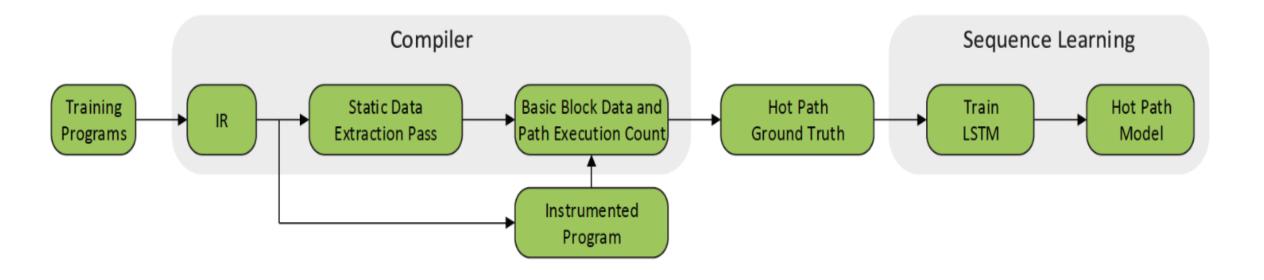
FPR = FP/(FP+TN)

TPR = FPR (Random)

More area => better classifier

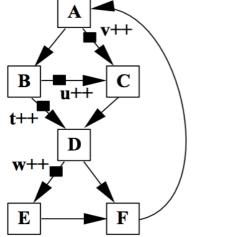


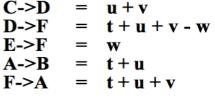
Crystal Ball - Overview

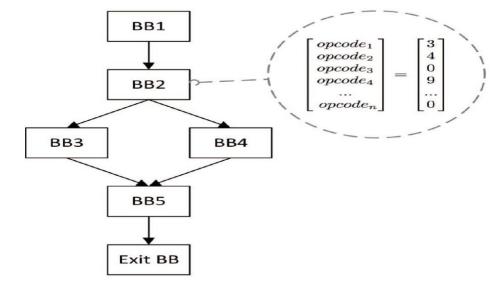


Crystal Ball - Implementation

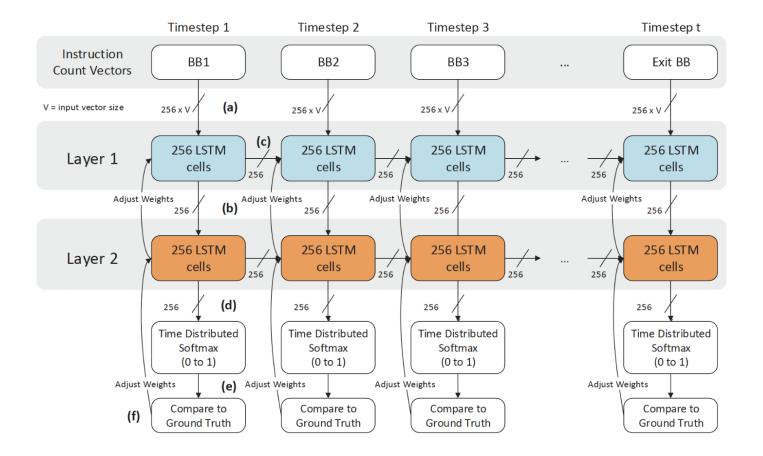
- Data Collection: Using Profiling Instrumentation
- Static Data Extraction
 - Basic Block to feature vector
- Path Sampling
 - Include all Hot Paths
 - Proportional Sampling for Cold paths
 - Equal number of Cold paths for every function (2000)
- Training: leave-one-program-out







LSTM Architecture



Programs – SPEC CPU20

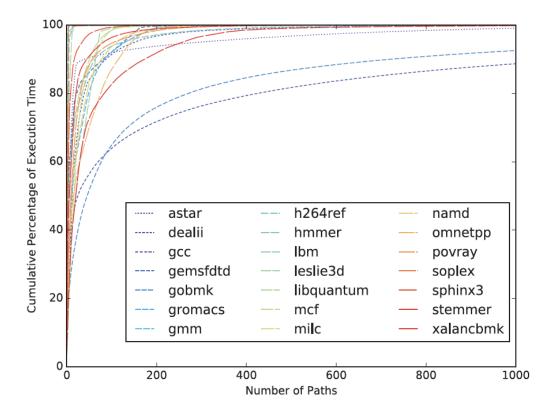
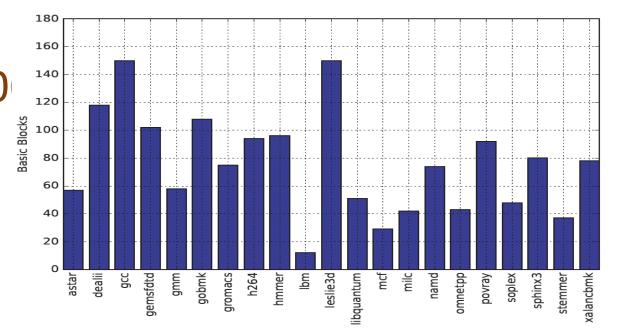
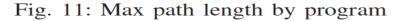


Fig. 9: Paths responsible for cumulative runtime





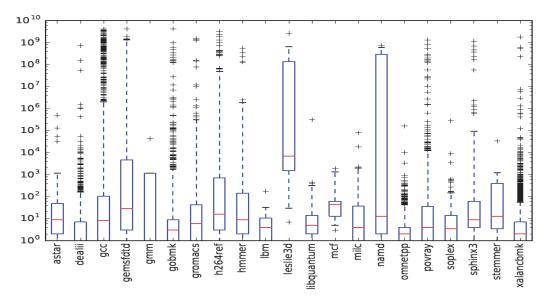


Fig. 10: Path counts per function

Logistic regression - B&W static path classifier

- Removed Features specific to java code
- > Added IR specific feature
- Hand crafted features
- One feature vector per path
- ➢ B& W model − 0.83 AUROC, Crystal Ball − 0.85

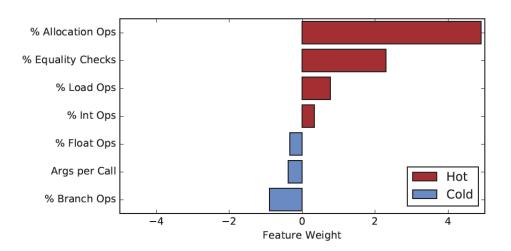


Fig. 15: Most important feature weights

Results -

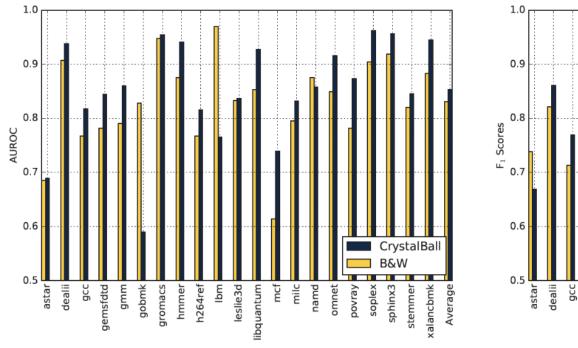
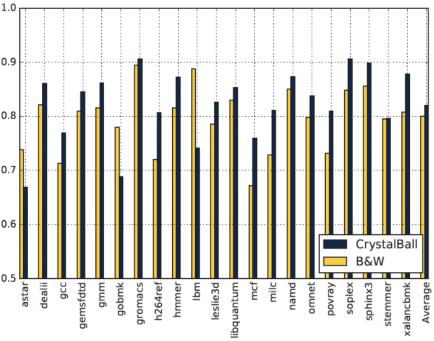


Fig. 12: AUROC by program

Fig. 13: F_1 scores by program



Future Work/Caveats

- Although AUROC is best among the shown measure, greater AUROC value doesn't guarantee better model.
- > Actual improvement in runtime behavior of a program?
- LSTM can just be used for feature extraction
- Novelty detection problem SVM, K- Means
- Various Optimization flags and IR combination can be tried out.

Questions?