
CrystalBall: Statically Analyzing
Runtime Behavior

via Deep Sequence Learning

Stephen Zekany

Daniel Rings

Nathan Harada

Michael A. Laurenzano

Lingjia Tang

Jason Mars

Introduction

➢ Why analyze runtime behavior?

➢ How to analyze it for software lifecycle? – Hot Paths (1 in a million)

➢ Path profiling:

➢ Dynamic Profiling:
Digital Mars C++

➢ Group functions that call each other

➢ Static Profiling:
Predict runtime behavior before the program runs

➢ Applications - Branch Prediction, Trace formation, Basic Block placement
optimization

Why not Dynamic Profiling?

➢ Needs representative production environment

➢ Computationally Expensive

➢ In for a penny, in for a pound

Static Profiling – CrystalBall

➢ Program behavior is latent within instructions

➢ Higher the quality of static analysis => better runtime prediction

➢ Can leverage large amount of data

➢ Language independent – uses Intermediate Representation (IR)

➢ IR – Semantic + Low - level Ops

Compilers - GCC, LLVM (Low Level Virtual Machine)

➢ Sequence of blocks => use RNN

Intermediate Representation

C++ Function -
int mul_add(int x, int y, int z){

return x * y + z;

}
IR -

define i32 @mul_add(i32 %x, i32 %y, i32 %z) {

entry:

%tmp = mul i32 %x, %y

%tmp2 = add i32 %tmp, %z

ret i32 %tmp2

}

Basic Block
Source Code:

w = 0;

x = x + y;

y = 0;

if (x > z) {

y= x;

x++;

}

else{

y = z;

z++;

}

w = x + z;

Basic Blocks:
w = 0;
x = x + y;
y = 0;
if (x > z)

y= x;
x++;

y = z;
z++;

w = x + z;

B1

B2

B3

B4

B1

B3B2

B4

Enter

exit

Ball Larus Path Profiling

➢ Convert each function to Directed Acyclic Graph (DAG)

➢ Back edges are removed in DFS

➢ Unique sum of edge weight for a path

Performance Metrics

Confusion Matrix:
Predicted

Actual

➢ Precision = TP/ (TP + FP)

➢ Recall = TP/(TP+FN)

➢ F1 – measure = 2 * Precision * Recall /(Precision + Recall)

+ve -ve

+ve TP FN

-ve FP TN

Solution – AUROC (Area Under ROC)

TPR (Recall) = TP/ (TP + FN)

FPR = FP/(FP+TN)

TPR = FPR (Random)

More area => better classifier

Crystal Ball - Overview

Crystal Ball - Implementation

➢ Data Collection: Using Profiling Instrumentation

➢ Static Data Extraction
➢ Basic Block to feature vector

➢ Path Sampling –
➢ Include all Hot Paths
➢ Proportional Sampling for Cold paths
➢ Equal number of Cold paths for every

function (2000)

➢ Training: leave-one-program-out

LSTM Architecture

Programs – SPEC CPU2006

Logistic regression - B&W static path classifier

➢ Removed Features specific to java code

➢ Added IR specific feature

➢ Hand crafted features

➢ One feature vector per path

➢ B& W model – 0.83 AUROC, Crystal Ball – 0.85

Results -

Future Work/Caveats

➢ Although AUROC is best among the shown measure, greater
AUROC value doesn’t guarantee better model.

➢ Actual improvement in runtime behavior of a program?

➢ LSTM can just be used for feature extraction

➢ Novelty detection problem – SVM, K- Means

➢ Various Optimization flags and IR combination can be tried out.

Questions?

