CAPES:Unsupervised Storage Performance
Tuning Using Neural Network-Based Deep
Reinforcement Learning

Yan li, Kenneth Chang, Oceane Bel, Ethan L. Miller, Darrel
D. E. Long

Performance Tuning

Tuning system’s parameters for high performance

Can be very challenging

o Correlation between several variables in a system

o Delay between action and resulting change in performance
o Huge search space

o Requires extensive knowledge and experience

Static parameter values for dynamic workloads

Congestion Curse-Exceeding certain load limit will negatively affect the
performance of several components

® Automated Performance Tuning is required!!

Automated Parameter Tuning

® Challenges
o Systems are extremely complex.
o Workloads are dynamic and they also affect each other
o Responsiveness
o Scalability
o Has to be tuned for multiple objective functions.

® Dynamic parameter tuning-Partially Observable Markov Decision Process

® Hard Problem

o Varying delays between action and result
o Change in performance could be a result of sequence of modifications

® Credit Assignment Problem

CAPES

® Computer Automated Performance Enhancement System

® Unsupervised Problem
o Parameters can change based on several factors not just workload. So labelled data is
impractical
® Model-less Deep Reinforcement Learning
o A game to find parameter values that maximize/minimize some function(may be throughput or

latency)
o Use of deep learning techniques with reinforcement learning.

l Reward I

Agent

State

Take Environment
action

Observe state
D

Q-value

ROWIM: o §y Re=)yr S—
i=r =
Q-value Q(st,ar) = max Ry4q =

Policy: ﬂ_(S) — mf?x Q(S, a) I {

Bellman Equation:

Q(s,a)=r+y max Q(s’,a’)

Deep-Q-Learning

Q* learning

Need to learn Q-function bees & Neur

network

o Core of Q-learning

Q-network Deep Q* learning
o A deep neural network to approximate the Q-function
o Output of Q-network will be a Q-value for a given state and action
o Weights of the network to reduce the MSE for samples

Li(0;) = Ep[(ri + y max Q(s",a";6;) — Q(s, a; 6,)°]

Since we don’t have the actual Q-value of all possible actions we try to
approximate and over time we update the weights to predict reasonable
predictions.

Architecture

® Monitoring Agent

o Gather Information about current state of the network and rewards(objective function)

o Communicate with Interface daemon

CAPES Cantral Node
Replay Database N b =@
o Stores received information and performed actions learning enaine — :
o Experience DB M:M ' h'@mm‘,
DRL Engine S I R
o Reads the data from replay DB and sends back an acti o o mance
COntrO| AgentS ::E::n App. node(s) gﬁuurnm[ﬂ
o Performs the received action on the nodes. Applications | | service programs
Interface Daemon Manitor sgnt w1 Monitor agent
o Communicates between CAPES and target system Controi agent !..* Cantrol agent
Action Checker '

o Checks if the action is valid

Algorithm

® Data is collected at certain frequency(1 sec)
o Sampling Tick
o Sends only when its different from previous tick
® Observation matrix to capture the trend

die-s+1 dze-s41 - dNg-$a d=objective ,i=node, j=time,N=total nodes,S=sampling
£ = dy,r-s5+2 dz-s+2 oo dN-5+2 ticks
dy da 4 dn g

Algorithm 1 Constructing a minibatch of size n from data in the
Replay DB.

1: procedure ConsTRucTMNIBATCH(NR)

x samplesNeeded — n

¥ while True do
4 Uniformly generate samplesNeeded timestamps
> for each timestamp t; do
(¥ if Replay DB contains enough data at £; then
T Get s¢, sr+1, @r from Replay DB
& ri +— CalcReward{ s, 5¢41)
ks W =54, Spp1. ap, 1)
i end if
11: end for
1 if W has n samples then return W
1% end if
14 samplesNeeded — n — len{ W)
15 end while

it: end procedure

Batches of these observations are send to DRL engine

Reduce the data movement overhead

Neural Network Training

® Itis proven that a NN with 1 hidden layer can approximate any mathematical
function

® 2 hidden layer network
o Adam optimizer is used
o Tanh activation is used

® Output layer consists of same number of nodes as the number of actions each
denoting a action.

® Each training step needs the state transition information which is checked in
Replay DB before training.

Wi = (Sr-.. St+1-04t, f‘r)

Performance Indicators and Rewards

® Performance Indicators-Feature extraction problem
o Can be relaxed as DNN are known for feature extraction
o Date and time can be included as separate features if workloads seem to be cyclic
o Raw and secondary system status can be used

® Rewards
o Immediate rewards are taken after an action is performed
o Reward is objective function like latency or throughput
o No need to worry about delay in change of the performed action

® Actions
o Increase or decrease the value of parameter by a step size-can be varied based on system

o Null action is also included if no action is required
o This makes total number of actions 2 x tunable_parameter +1

Implementation

Lustre file system-high performance distributed file system
1 Object Storage client/client and 4 servers and implemented using 5 clients.

All nodes have the same system configuration

. (1) max_rpe_in_flight: Lustre congestion window size.
o M3MB/sread ,106 MB/s write (2) Read throughput.
o Default stripe count of 4 with 1IMB stripe size (3) Write throughput.

o 11 network to storage bandwidth ratio -HPC 4) Direy bytes in wiite cache.
(5) Maximum size of write cache.

CAPES runs on different dedicated node (6) Ping latency from each client to each server.
(7} Ack EWMA: exponentially weighted moving average (EWMA)
Only 2 parameters are tuned of gaps between server replies.

o Max_rpc_in_flight:congestion window size (8) Send EWMA: EWMA of gaps between the original sent
times of the corresponding requests of the replies received

o 1/O rate limit:outgoing I/O requests allowed by the client.
(9) Process Time (PT) ratio: current Process Time / shortest

Process Time seen so far. Process Tone is the Hme needed

by the server to process one [0 request.

Evaluation

[Baseline
read:write CAPES (12h) 188
9. = 170 (-9%)
O:1 o/ Il CAPES (24h) 188 (+0%)
read:write 159
—4:1 = 157 (-1%)
174 (+9%)
read:write i 148
-1:1 = 151 (+2%)
’ 148 (+0%)
read:write H-160
=1:4 = 189 (+17%)
’ 189 (+18%)
read:write HH 126
-1:9 =183 (+45%)
' 179 (+41%)
0 50 100 150 200 250

Sustained throughput (MB/s)

Figure 2: Overview of random read write workloads evalu-
ated with CAPES. Throughput before, after 12 hours train-
ing, and after 24 hours training are shown. Baseline uses
default Lustre settings. Error bars show 95% confidence in-
tervals.

1 Baseline
_ ‘ 182
Filebench CAPES (12h) r

‘ - 178 (2% ‘
leserver f mm caves 4 [14 +177%

seq. 1 175
write | =179 (+2%) T
208 (+18%)
0 50 100 150 200 250

Sustained throughput (MB/s)

Figure 3: Overview of Filebench file server and sequential
write workload evaluated with CAPES. Throughput before
and after CAPES tuning are shown. Baseline uses default
Lustre settings. Error bars show 95% confidence intervals.

Training Evaluation

Fileserver Workload Throughput B Ty —

200 i 1.2}
= . 1.0
= 150 - E
= o 0.8
£ 8
2 100 i 5 0.6
e g
= 04}
50 1 Baseline |{
BN CAPES 02}
0.0 1 | 1 1 1 1
A (17%) B (36%) C (13%) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 35
Tests (Throughput increase) Training step le6

Figure 4: Fileserver workload throughput with and without
CAPES tuning. Baseline uses default Lustre settings. Error
bars show the confidence interval at 95% confidence level.

Training impact on performance

Random action during start of training

Training's Impact on Performance

200
T

~ 150} 1

Z 100}

£

=

E

50} .
[Baseline
Bl During training
0 I I 1
A B C Training

Tests

Figure 6: Baseline throughputs and training session overall
throughput. Error bars show the confidence interval at 95%

confidence level.

Thoughts:

® It would be better if CAPES/other technique on top of capes can even
select/give more importance to different tunable parameters based on
requests.

® There is still a possibility for improvement by using other RL methods like
Actor-critic where multiple agents are trained for the same problem-each will
have different experience..

® Increment or decrement of parameter by a fixed step size doesn’t seem
logical.lt can also be scaled based on the workload.

