
CAPES:Unsupervised Storage Performance
Tuning Using Neural Network-Based Deep
Reinforcement Learning

Yan li, Kenneth Chang, Oceane Bel, Ethan L. Miller, Darrel
D. E. Long

Performance Tuning

● Tuning system’s parameters for high performance

● Can be very challenging
○ Correlation between several variables in a system

○ Delay between action and resulting change in performance

○ Huge search space

○ Requires extensive knowledge and experience

● Static parameter values for dynamic workloads

● Congestion Curse-Exceeding certain load limit will negatively affect the

performance of several components

● Automated Performance Tuning is required!!

Automated Parameter Tuning

● Challenges
○ Systems are extremely complex.

○ Workloads are dynamic and they also affect each other

○ Responsiveness

○ Scalability

○ Has to be tuned for multiple objective functions.

● Dynamic parameter tuning-Partially Observable Markov Decision Process

● Hard Problem
○ Varying delays between action and result

○ Change in performance could be a result of sequence of modifications

● Credit Assignment Problem

CAPES

● Computer Automated Performance Enhancement System

● Unsupervised Problem
○ Parameters can change based on several factors not just workload. So labelled data is

impractical

● Model-less Deep Reinforcement Learning
○ A game to find parameter values that maximize/minimize some function(may be throughput or

latency)

○ Use of deep learning techniques with reinforcement learning.

Q-value

Return:

Q-value:

Policy:

Bellman Equation:

Deep-Q-Learning

● Need to learn Q-function
○ Core of Q-learning

● Q-network
○ A deep neural network to approximate the Q-function

○ Output of Q-network will be a Q-value for a given state and action

○ Weights of the network to reduce the MSE for samples

● Since we don’t have the actual Q-value of all possible actions we try to

approximate and over time we update the weights to predict reasonable

predictions.

Architecture

● Monitoring Agent
○ Gather Information about current state of the network and rewards(objective function)

○ Communicate with Interface daemon

● Replay Database
○ Stores received information and performed actions
○ Experience DB

● DRL Engine
○ Reads the data from replay DB and sends back an action.

● Control Agents
○ Performs the received action on the nodes.

● Interface Daemon
○ Communicates between CAPES and target system

● Action Checker
○ Checks if the action is valid

Algorithm

● Data is collected at certain frequency(1 sec)
○ Sampling Tick

○ Sends only when its different from previous tick

● Observation matrix to capture the trend

Batches of these observations are send to DRL engine

Reduce the data movement overhead

d=objective ,i=node, j=time,N=total nodes,S=sampling
ticks

Neural Network Training

● It is proven that a NN with 1 hidden layer can approximate any mathematical

function

● 2 hidden layer network
○ Adam optimizer is used

○ Tanh activation is used

● Output layer consists of same number of nodes as the number of actions each

denoting a action.

● Each training step needs the state transition information which is checked in

Replay DB before training.

Performance Indicators and Rewards

● Performance Indicators-Feature extraction problem
○ Can be relaxed as DNN are known for feature extraction

○ Date and time can be included as separate features if workloads seem to be cyclic

○ Raw and secondary system status can be used

● Rewards
○ Immediate rewards are taken after an action is performed

○ Reward is objective function like latency or throughput

○ No need to worry about delay in change of the performed action

● Actions
○ Increase or decrease the value of parameter by a step size-can be varied based on system

○ Null action is also included if no action is required

○ This makes total number of actions 2 x tunable_parameter +1

Implementation

● Lustre file system-high performance distributed file system

● 1 Object Storage client/client and 4 servers and implemented using 5 clients.

● All nodes have the same system configuration
○ 113MB/s read ,106 MB/s write

○ Default stripe count of 4 with 1MB stripe size

○ 1:1 network to storage bandwidth ratio -HPC

● CAPES runs on different dedicated node

● Only 2 parameters are tuned
○ Max_rpc_in_flight:congestion window size

○ I/O rate limit:outgoing I/O requests allowed

Evaluation

Training Evaluation

Training impact on performance

Random action during start of training

Thoughts:

● It would be better if CAPES/other technique on top of capes can even

select/give more importance to different tunable parameters based on

requests.

● There is still a possibility for improvement by using other RL methods like

Actor-critic where multiple agents are trained for the same problem-each will

have different experience .

● Increment or decrement of parameter by a fixed step size doesn’t seem

logical.It can also be scaled based on the workload.

