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Performance Tuning

Tuning system’s parameters for high performance

Can be very challenging

o Correlation between several variables in a system

o Delay between action and resulting change in performance
o Huge search space

o Requires extensive knowledge and experience

Static parameter values for dynamic workloads

Congestion Curse-Exceeding certain load limit will negatively affect the
performance of several components

® Automated Performance Tuning is required!!



Automated Parameter Tuning

® Challenges
o Systems are extremely complex.
o Workloads are dynamic and they also affect each other
o Responsiveness
o Scalability
o Has to be tuned for multiple objective functions.

® Dynamic parameter tuning-Partially Observable Markov Decision Process

® Hard Problem

o Varying delays between action and result
o Change in performance could be a result of sequence of modifications

® Credit Assignment Problem



CAPES

® Computer Automated Performance Enhancement System

® Unsupervised Problem
o Parameters can change based on several factors not just workload. So labelled data is
impractical
® Model-less Deep Reinforcement Learning
o A game to find parameter values that maximize/minimize some function(may be throughput or

latency)
o Use of deep learning techniques with reinforcement learning.
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Deep-Q-Learning

Q* learning

Need to learn Q-function bees & Neur

network

o Core of Q-learning

Q-network Deep Q* learning
o A deep neural network to approximate the Q-function
o Output of Q-network will be a Q-value for a given state and action
o Weights of the network to reduce the MSE for samples

Li(0;) = Ep[(ri + y max Q(s",a";6;) — Q(s, a; 6,)°]

Since we don’t have the actual Q-value of all possible actions we try to
approximate and over time we update the weights to predict reasonable
predictions.



Architecture

® Monitoring Agent

o Gather Information about current state of the network and rewards(objective function)

o Communicate with Interface daemon
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Algorithm

® Data is collected at certain frequency(1 sec)
o Sampling Tick
o Sends only when its different from previous tick
® Observation matrix to capture the trend
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Algorithm 1 Constructing a minibatch of size n from data in the
Replay DB.

1: procedure ConsTRucTMNIBATCH(NR)

x samplesNeeded — n

¥ while True do
4 Uniformly generate samplesNeeded timestamps
> for each timestamp t; do
(¥ if Replay DB contains enough data at £; then
T Get s¢, sr+1, @r from Replay DB
& ri +— CalcReward{ s, 5¢41)
ks W =54, Spp1. ap, 1)
i end if
11: end for
1 if W has n samples then return W
1% end if
14 samplesNeeded — n — len{ W)
15 end while

it: end procedure

Batches of these observations are send to DRL engine

Reduce the data movement overhead



Neural Network Training

® Itis proven that a NN with 1 hidden layer can approximate any mathematical
function

® 2 hidden layer network
o Adam optimizer is used
o Tanh activation is used

® Output layer consists of same number of nodes as the number of actions each
denoting a action.

® Each training step needs the state transition information which is checked in
Replay DB before training.

Wi = (Sr-.. St+1-04t, f‘r)



Performance Indicators and Rewards

® Performance Indicators-Feature extraction problem
o Can be relaxed as DNN are known for feature extraction
o Date and time can be included as separate features if workloads seem to be cyclic
o Raw and secondary system status can be used

® Rewards
o Immediate rewards are taken after an action is performed
o Reward is objective function like latency or throughput
o No need to worry about delay in change of the performed action

® Actions
o Increase or decrease the value of parameter by a step size-can be varied based on system

o Null action is also included if no action is required
o This makes total number of actions 2 x tunable_parameter +1



Implementation

Lustre file system-high performance distributed file system
1 Object Storage client/client and 4 servers and implemented using 5 clients.

All nodes have the same system configuration

. (1) max_rpe_in_flight: Lustre congestion window size.
o  M3MB/sread ,106 MB/s write (2) Read throughput.
o Default stripe count of 4 with 1IMB stripe size (3) Write throughput.

o 11 network to storage bandwidth ratio -HPC 4) Direy bytes in wiite cache.
(5) Maximum size of write cache.

CAPES runs on different dedicated node (6) Ping latency from each client to each server.
(7} Ack EWMA: exponentially weighted moving average (EWMA)
Only 2 parameters are tuned of gaps between server replies.

o Max_rpc_in_flight:congestion window size (8) Send EWMA: EWMA of gaps between the original sent
times of the corresponding requests of the replies received

o 1/O rate limit:outgoing I/O requests allowed by the client.
(9) Process Time (PT) ratio: current Process Time / shortest

Process Time seen so far. Process Tone is the Hme needed

by the server to process one [0 request.



Evaluation
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Figure 2: Overview of random read write workloads evalu-
ated with CAPES. Throughput before, after 12 hours train-
ing, and after 24 hours training are shown. Baseline uses
default Lustre settings. Error bars show 95% confidence in-
tervals.
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Figure 3: Overview of Filebench file server and sequential
write workload evaluated with CAPES. Throughput before
and after CAPES tuning are shown. Baseline uses default
Lustre settings. Error bars show 95% confidence intervals.



Training Evaluation
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Figure 4: Fileserver workload throughput with and without
CAPES tuning. Baseline uses default Lustre settings. Error
bars show the confidence interval at 95% confidence level.




Training impact on performance

Random action during start of training

Training's Impact on Performance

200
T

~ 150} 1

Z 100}

£

=

E

50} .
[ Baseline
Bl During training
0 I I 1
A B C Training

Tests

Figure 6: Baseline throughputs and training session overall
throughput. Error bars show the confidence interval at 95%

confidence level.



Thoughts:

® It would be better if CAPES/other technique on top of capes can even
select/give more importance to different tunable parameters based on
requests.

® There is still a possibility for improvement by using other RL methods like
Actor-critic where multiple agents are trained for the same problem-each will
have different experience..

® Increment or decrement of parameter by a fixed step size doesn’t seem
logical.lt can also be scaled based on the workload.



