
ApDeepSense : Deep Learning Uncertainty Estimation 
Without the Pain for IoT Applications

Shuochao Yao et al

1



Problem Statement

- Deep learning models have shown significant improvement in the 
expected accuracy of sensory inference tasks but do not provide 
uncertainty estimates in their outputs.

- Uncertainty estimates are indispensable for IoT applications. Empirical 
extensive testing consumes a lot of energy and overhead. 

2



- Authors proposed ApDeepSense, an efficient deep learning uncertainty 
estimation method for resource-constrained IoT devices. Achieved 88.9% 
reduction in run time and 90% reduction in energy consumption.

- Approach links Bayesian approximation allowing the output uncertainty to be 
quantified. Introduced a novel layer-wise approximation which replaces the 
sampling-based uncertainty estimation methods.

- Designed for neural networks which leverage dropout. Dropout is a patented 
regularization technique from Google.

3



ApDeepSense Model features

- Helps pre-trained deep neural networks with dropout to generate output 
uncertainty estimates in a computationally efficient manner without any 
re-training.

- Replace resource-hungry sampling method with efficient layer-wise 
distribution approximations

- Closed-form Gaussian approximation is then optimally fitted to best 
approximate the true output distribution of each operation by minimizing 
the Kullback-Liebler (KL) divergence.

- Trick to handle the non-linearity inherent with activation functions by 
substituting with piece-wise linear functions.

4



Preliminaries

1. Basics of dropout.

y(l) = x(l) W(l) + b(l)

x(l+1) = f (l) (y(l))

W(l), b(l) parameters of the lth layer of the neural network

- To prevent co-adapting and model overfitting, Srivastava et al. proposed 
dropout, which drops out hidden and visible units in neural networks.

5



- This can be shown to be equivalent to

z[i]
(l) ~ Bernoulli(p[i]

(l))

W*(l) = diag(z(l))W(l)

y(l) = x(l)W*(l)+b(l)

x(l+1) = f (l) (y(l))

Here z(l) forms a diagonal matrix which acts as a mask to dropout the ith row of W*(l)

- This makes the neural network stochastic since it’s structure is partly described by 
random variables (Bernoulli variables).

- The variance of the output is a measure of the neural network output uncertainty.

Preliminaries

6



Preliminaries

2.   Dropout as Bayesian approximation

- Interested in learning the posterior distribution over weight matrices W 

p(W |X,Y) given the training data X and labels Y, where W = {W(l)}

- Then the posterior can be applied to calculate the output distribution y of 
testing data x through

 7



- Computing the exact posterior distribution is not tractable in a Bayesian Neural 
Network. Use variational inference instead to approximate posterior distribution 
q(W).

- Gal et al. proved that, if we select the approximate posterior distribution to be:  

- We see striking similarity between dropout and approximate posterior distribution. 
Further works in the paper shows that their objective functions are equivalent.

- During inference, the output mean and variance can be estimated using samples 
generated with random dropout. More samples need to be collected which also 
means running the neural network model again.

- Not feasible for edge and mobile computing applications.

Preliminaries

8



ApDeepSense Model

- Interested in an entire probability distribution of output of the layer rather 
than the expected value of each output at the layer.

- This is achieved by extending matrix multiplication functions and 
activation functions

- Select the multivariate Gaussian distribution to approximate the output 
distribution of each layer.

9



1. The choice of approximation distribution 
family

- Feeding the output of one Gaussian 
process to covariance of the next.

- Train a 20-layer neural network with ReLU 
and dropout operation to learn the sum of 
200 independent Gaussian variables.

- The output distributions of two hidden units 
in Figure 1 clearly exhibit the shapes of bell 
curves with different means and variances. 

ApDeepSense Model

10



ApDeepSense Model ctd.

2.    Approximation criteria
- Approximate the multivariate Gaussian distribution based on minimizing the 

Kullbeck-Liebler (KL) divergence between the real an approximate distributions.
- The main objective function for the approximation is

- The values of μ and σ2 obtained are μ = ∫p(x)xdx and σ2 = ∫p(x)(x-μ2)dx which can be 
viewed as mean and variance matching between p(x) and q(x). These are the 
required values for the optimal q(x).

11



ApDeepSense Model ctd.

3.   Approximating matrix multiplication with dropout
- The basic matrix multiplication operation with dropout is summarized before as 

using the Bernoulli variable as a mask for dropout and the Gaussian variables x are 
independent random variables. We need to find the value the means and variances 
of output distribution p(y).

- Mean of output variables is given by                                  and the variances are given 
by

- These representations can be efficiently computed if they are represented in the 
form of matrix as shown

12



ApDeepSense Model ctd.

4.   Approximating activation functions
- The non-linear activation functions are approximated to piece-wise linear 

functions.
- The linear transformation of Gaussian random variables is well-understood and 

forms the basis of the proof.
- The whole axis is divided into parts and there exists a linear activation function 

on each interval.
- Using the linear activation functions and slope in each interval, the authors 

formulate two cases, (kp=0 and kp≠0)
- The narrower distributions offer less uncertainty, whereas flatter distributions 

offer more uncertainty.

13



Evaluation

- Consider the mean absolute error for accuracy and predictive log-likelihood for 
correspondence between ground truth and their predicted distribution. Lower 
values mean higher correspondence. 

- Evaluate running time and energy consumption on Intel Edison devices.

a. Testing hardware
- Intel Edison computing platform is powered by Intel Atom SoC dual-core CPU at 

500MHz and is equipped with 1GB memory and 4GB flash storage.
- All neural network models run on the CPU during experiments.

14



Evaluation ctd.

b.  Evaluation tasks and datasets
     Evaluation is based on 4 tasks which are as follows:

- BPEst : Cuffless BP monitoring
- NYCommute : Commute estimation of NYC
- GasSen : Estimate dynamic gas mixtures from sensors
- HHAR : Heterogeneous human activity recognition

c.  Testing models and uncertainty estimation algorithms
- Two pre-trained neural networks with the same structure but different activation 

functions.
- DNN-ReLu and DNN-Tanh. As the name suggests these neural networks were trained 

with ReLu and Tanh activation function respectively.

15



Evaluation ctd
- Authors compare with two other uncertainty estimation algorithms
- ApDeepSense : proposed algorithm
- MCDrop-k : sampling-based unbiased uncertainty estimation method for deep 

neural network with dropout and generated k output samples to use for predicting 
uncertainties.

- RDeepSense : Efficient uncertainty estimation which involves retraining the neural 
networks. Used as an upper-bound of estimation performance which can be 
achieved.

d.   Model estimation performance
- For each of the earlier mentioned tasks, we discuss model estimation performance
- For regression tasks, MAE and NLL are calculated.
- For classification tasks, ACC and NLL are calculated

16



Evaluation ctd.

1. BPEst
- The two pre-trained neural networks 

with ApDeepSense consistently have 
the lowest NLL values. This shows 
the approximation method used in 
ApDeepSense works well in the real 
dataset.

- ApDeepSense is not the 
best-performing on the MAE metric. It 
achieves bias-variance tradeoff by 
directly approximating the output 
distribution.

17



Evaluation ctd.

2.    NYCommute
- Consistent with the trend we see that 

the ApDeepSense pre-trained neural 
networks perform way better than the 
others.

- MCDrop-50 involves running the entire 
neural network model 50 times to 
obtain 50 samples. This algorithm still 
ends up having a high NLL value 
which indicates that it requires even 
more samples to achieve the same 
performance as ApDeepSense.

18



Evaluation ctd.

3.    GasSen
- ApDeepSense still outperforms all 

the other algoriths for jucertainty 
estimation with NLL metric.

- ApDeepSense still achieves a 
bias-variance trafeoff with better NLL. 

- In the DNN-Tanh network, we see that 
the uncertainty estimation is the clear 
priority of ApDeepSense.

19



Evaluation ctd.

4.    HHAR
- This is a classification task.
- The metrics for measurement are 

accuracy in percentage(ACC) and 
negative log likelihood(NLL).

- The results obtained show that 
ApDeepSense outperforms the other 
algorithms in both ACC and NLL 
metrics.

- Achieves better classification results 
and also likelihood estimation.

20



Evaluation ctd.
e.    System performance

- In this section inference time, energy consumption and model and system 
performance tradeoff is compared among the various uncertainty estimation 
algorithms.

● Inference Time and Energy Consumption results
- ApDeepSense saves around 94.1% and 83,6% inference time in average for DNN 

with ReLu and Tanh activation function respectively.
- ApDeepSense saves around 94.2% and 85.7% energy consumption in average for 

DNN with ReLu and Tanh activation function respectively.
- On comparison with MCDrop-50 algorithm we see that ApDeepSense requires just 2 

and 7 piecewise linear function to approximate ReLu and Tanh function. This saves 
the model from running 50 times and saves around 96% and 86% of computations 

21



Results Obtained

22



Evaluation ctd.

● Energy Consumption and Quality of Uncertainty Estimation
- We use the NLL metric for representing the quality of the uncertainty estimation.
- Smaller NLL means better uncertainty estimation quality
- Points in the left-bottom corner of these graphs indicate better tradeoffs between energy 

consumption and uncertainty estimation.
- Indicates using lesser energy to achieve a predictive distribution with lower negative 

log-likelihood.
- These tradeoffs show that ApDeepSense is in fact an effective and efficient uncertainty 

estimation algorithm for deep neural networks.
- The authors claim that ApDeepSense is the first energy-efficient test-time uncertainty 

estimation algorithm for trained deep neural networks deployed on IoT devices.

23



Results Obtained

24



Conclusion and Future Directions

- ApDeepSense does a good job in providing uncertainty estimations for neural 
networks

- There is no need for structure-changing or re-training of the models.
- Experiments on Intel Edison platform for different tasks showed reduction in 

inference time and energy consumption to provide uncertainty estimates.
- Supports only fully connected networks, can be extended to support convolutional 

and recurrent neural networks by replacing the dropout to convolutional or 
recurrent dropout.

- These dropout operations convert the neural network into a Bayesian neural 
network.

- Challenges in extending related operations to apply to probabilistic distribution 
inputs and offer closed-form output distribution using APIs in deep learning 
libraries.

25



Q&A Session

26




