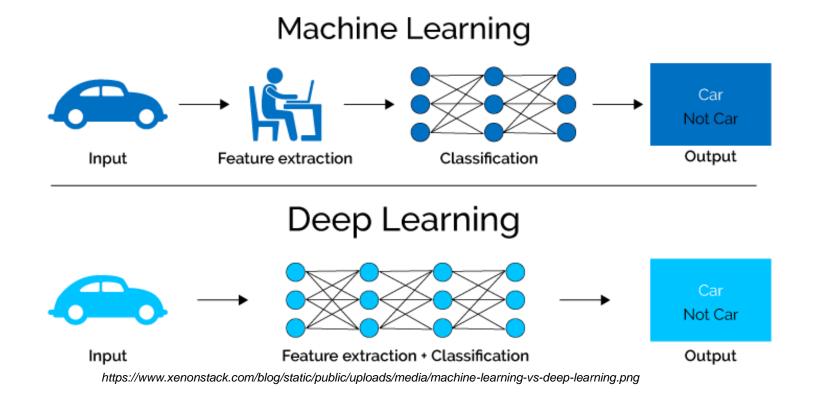
CSci 8980

Basics of Machine Learning and Deep Learning (Part II)

DL vs. ML

- Learning representations and patterns of data
- Generalization (failure of classic AI/ML)
- Learn (multiple levels of) representation by using a hierarchy of multiple layers



Why Now?

Increasing data sets

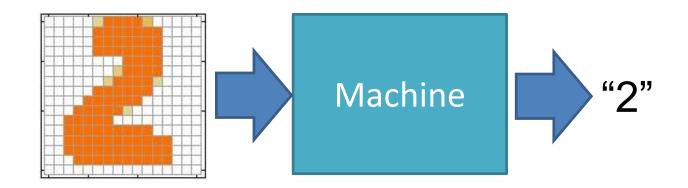
• Increasing model sizes (machine power)

• The basis for deep learning is Neural Networks

• Let's take a look at Neural Networks

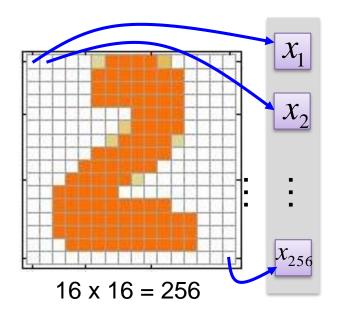
Example Application

• Handwriting Digit Recognition



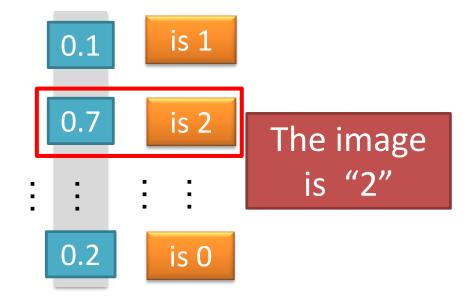
Handwriting Digit Recognition

Input



Ink
$$\rightarrow 1$$

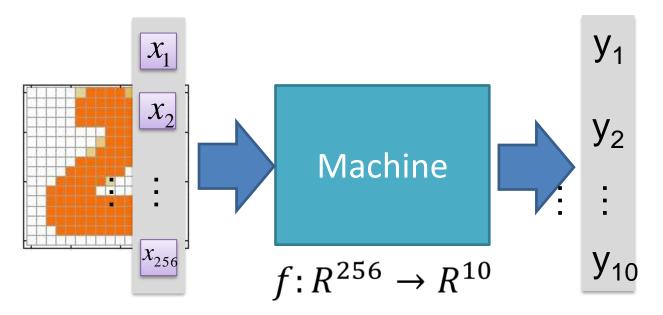
No ink $\rightarrow 0$



Each dimension represents the confidence of a digit.

Example Application

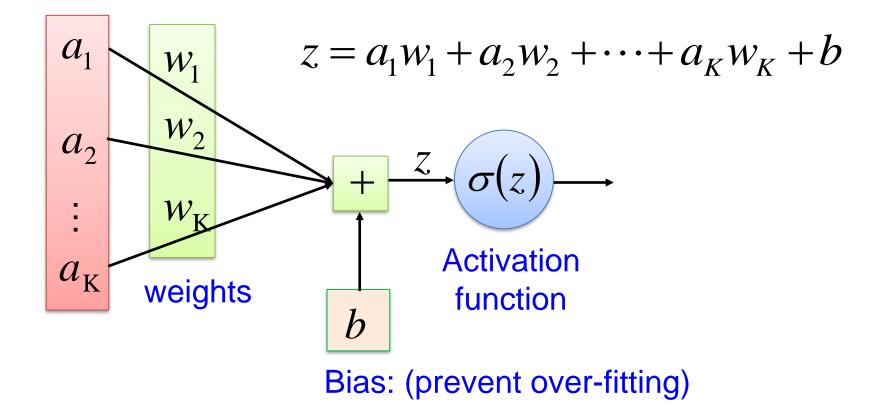
• Handwriting Digit Recognition



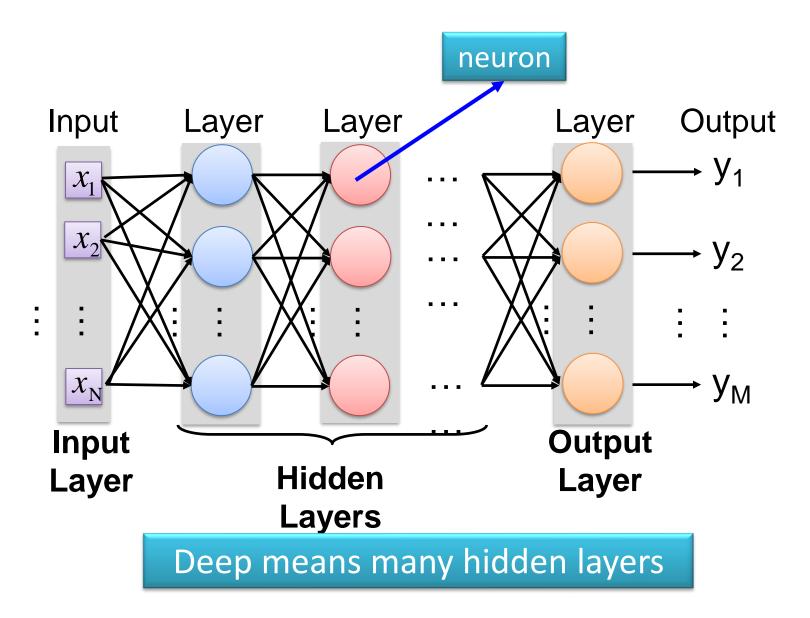
In deep learning, the function f is represented by neural network

Element of Neural Network

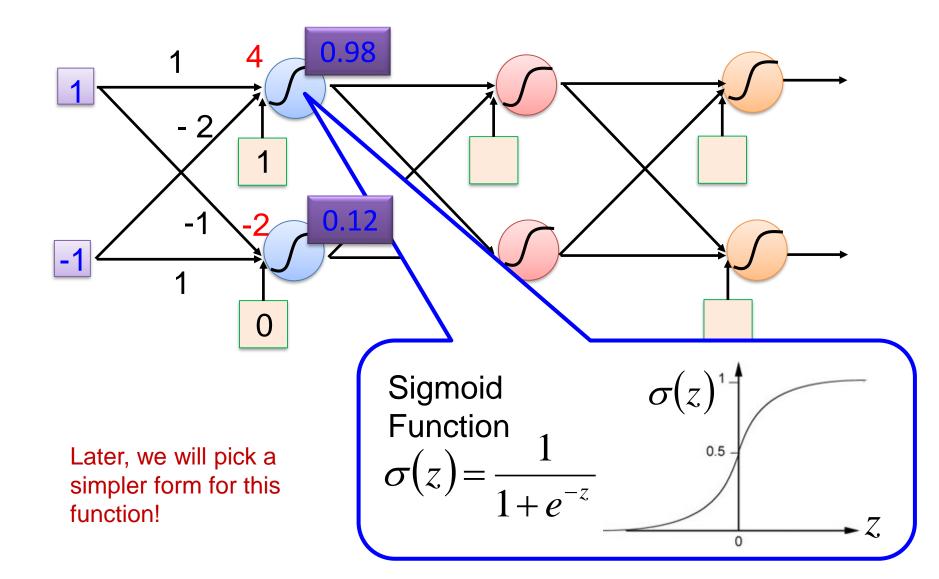
Neuron (perceptron) $f: \mathbb{R}^K \to \mathbb{R}$



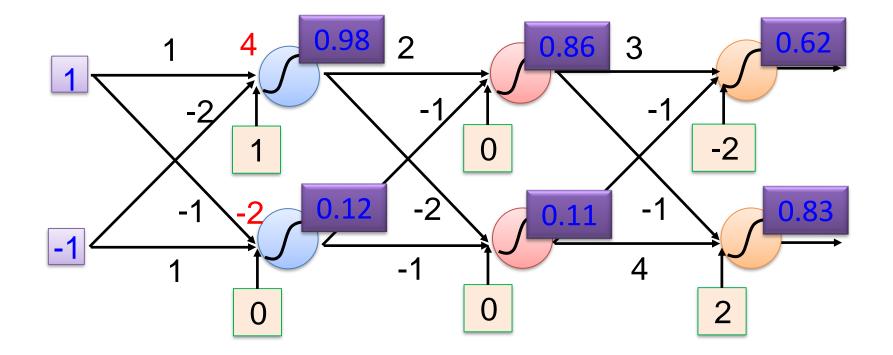
Neural Network



Example of Neural Network



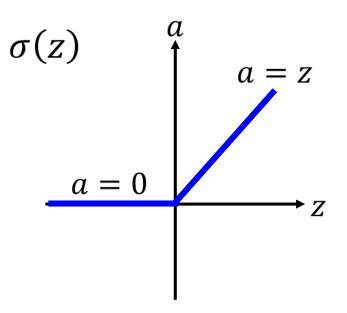
Example of Neural Network



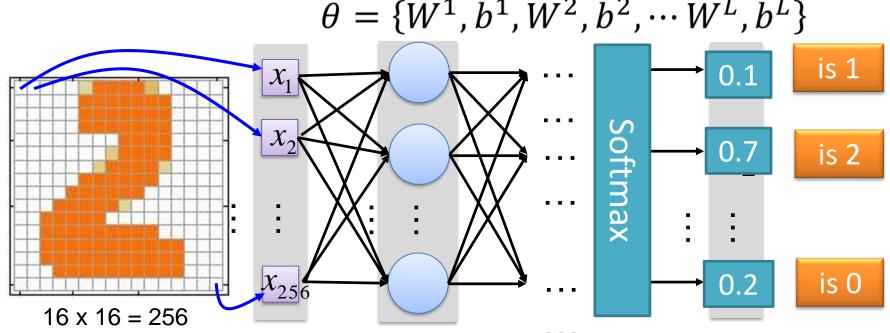
This is called a feed-forward network

Better Activation Function: ReLU

 Rectified Linear Unit (ReLU): faster convergence than sigmoid



How to set network parameters? Learning!

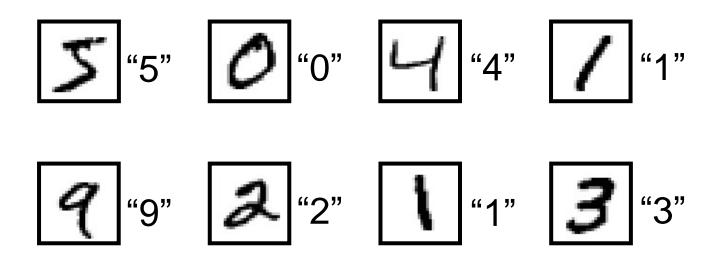


$$= \{W^{1}, b^{1}, W^{2}, b^{2}, \cdots W^{L}, b^{L}\}$$

 $lnk \rightarrow 1$ No ink $\rightarrow 0$

Training Data

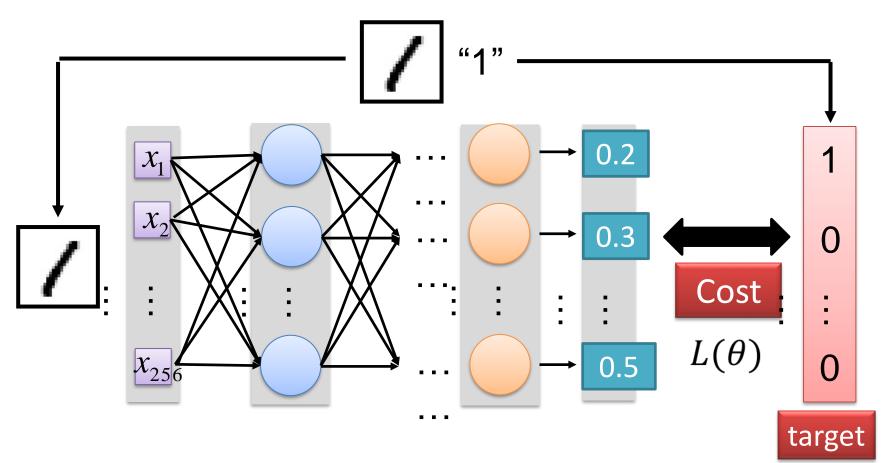
Preparing training data: images and their labels



Using the training data to find the network parameters.

Cost

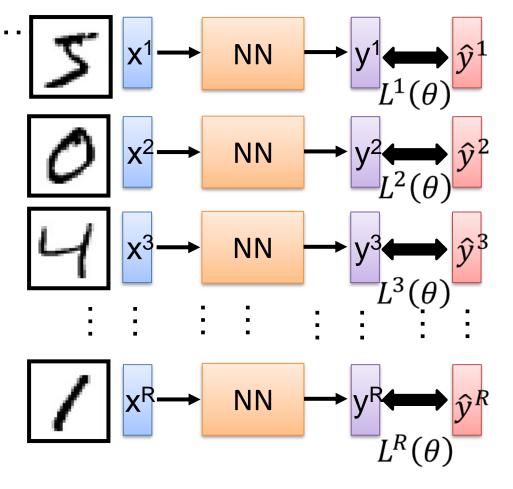
Given a set of network parameters θ , each example has a cost value.



Later we will see a good cost metric is ERROR

Total Cost

For all training data



Total Cost: $C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$

How poorly the network parameters θ are for this task

Find the network parameters θ^* that minimize this value

Cost typically measured as error

• Total-Sum-Squared-Error (TSSE)

$$TSSE = \frac{1}{2} \sum_{patternsoutputs} \sum_{patternsoutputs} (desired - actual)^2$$

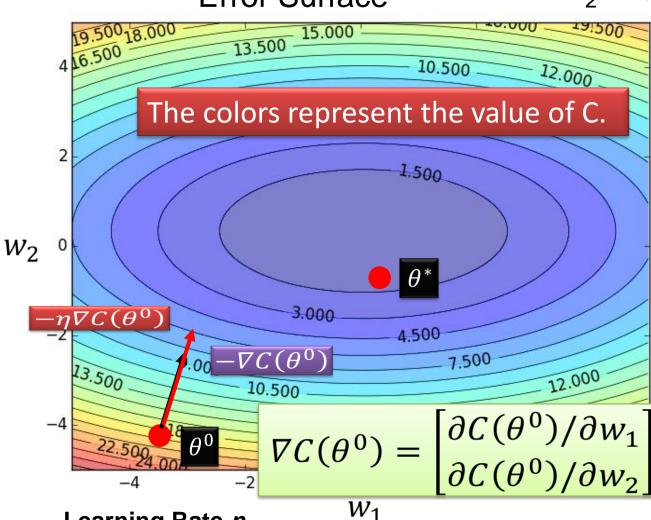
• Root-Mean-Squared-Error (RMSE)

$$RMSE = \sqrt{\frac{2*TSSE}{\# \, patterns*\# \, outputs}}$$

Intuition

- Search for parameters along a gradient that minimize cost (i.e. error)
- The idea:
 - Tweak parameters, see how cost/error changes
 - Do it again, and again, ...
- Gradient descent gives you a mathematical recipe to tweak parameters
 - Far away: take big jumps
 - Get close: take small jumps

Gradient Descent to find a minima **Error Surface**

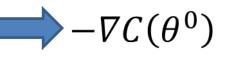


Assume there are only two parameters w₁ and w_2 in a network.

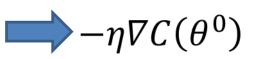
 $\theta = \{w_1, w_2\}$

Randomly pick a starting point θ^0

Compute the negative gradient at θ^0



Times the learning rate η

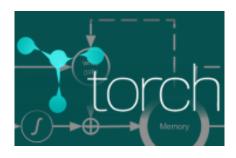


Learning Rate-*η*

A scalar parameter, analogous to step size in numerical integration, used to set the rate of adjustments

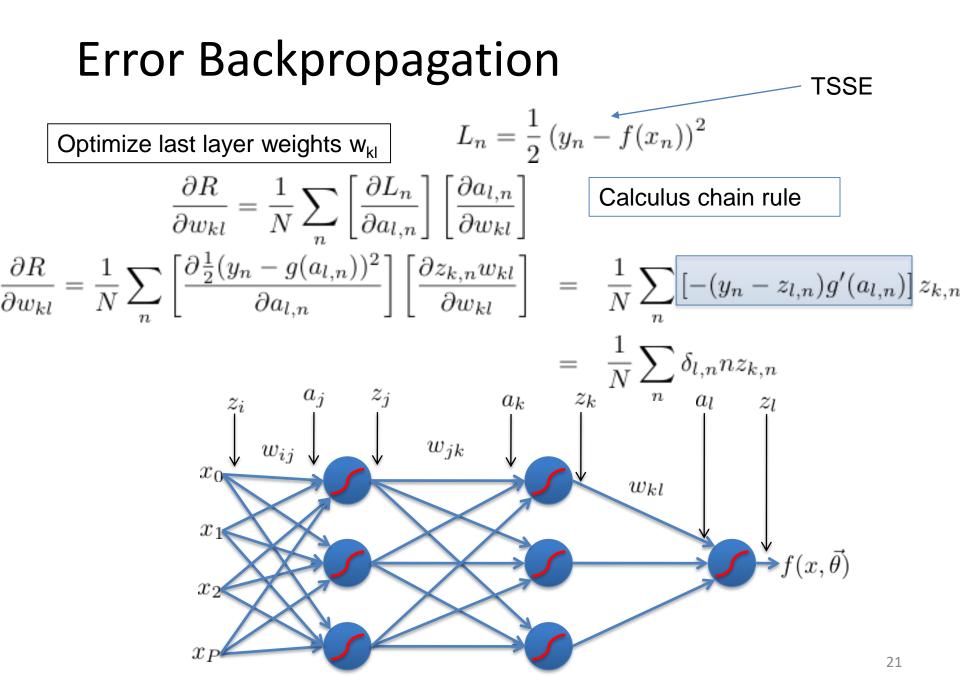
Backpropagation

- Backpropagation is a popular way to compute the gradients and the weights efficiently
 - Many toolkits can compute the gradients automatically



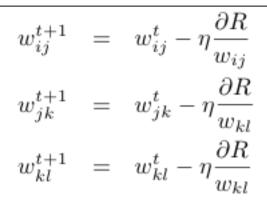
Backpropagation Algorithm

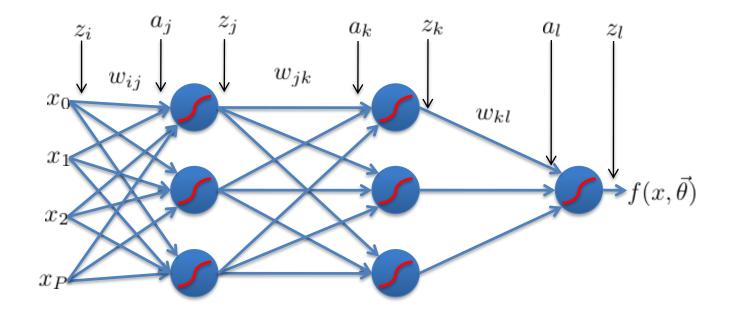
- Randomly choose the initial weights
- While error is too large
 - For each training pattern (presented in random order)
 - Apply the inputs to the network
 - Calculate the output for every neuron from the input layer, through the hidden layer(s), to the output layer
 - Calculate the error at the outputs
 - Use the output error to compute error signals for pre-output layers
 - Use the error signals to compute weight adjustments
 - Apply the weight adjustments
 - Periodically evaluate the network performance



Error Backpropagation

Now that we have well defined gradients for each parameter, update using Gradient Descent





How many layers: Deeper is Better?

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1

Not surprised, more parameters, better performance

(word recognition task)

Universality Theorem

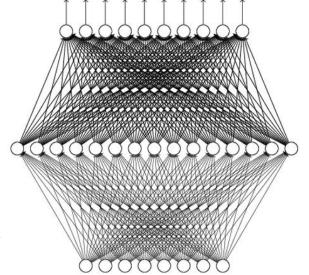
Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

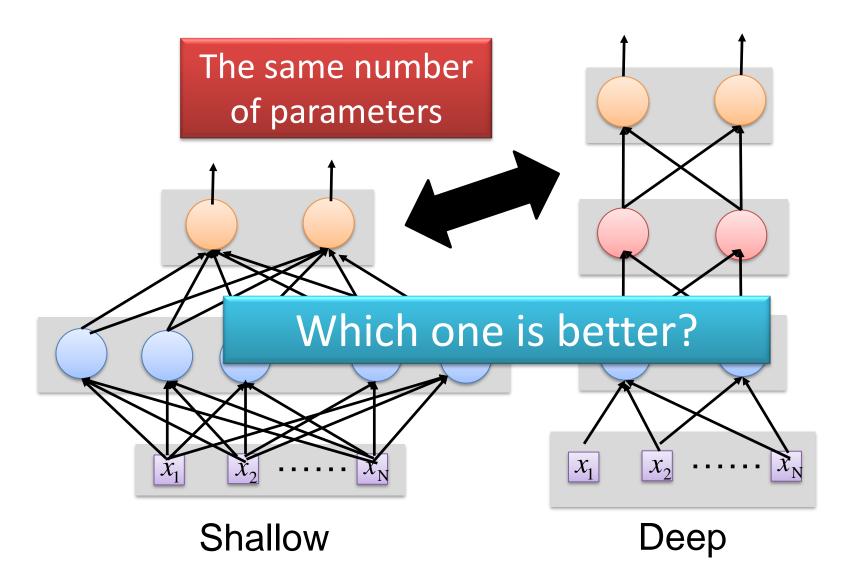
Can be realized by a network with one hidden layer

(given enough hidden neurons)

Why "Deep" neural network not "Fat" neural network?



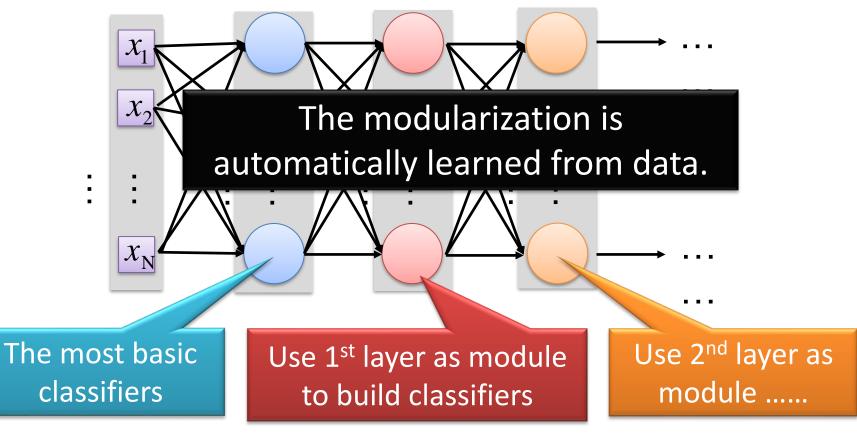
Fat + Short v.s. Thin + Tall



Deep Wins

Deep Learning also works on small data sets

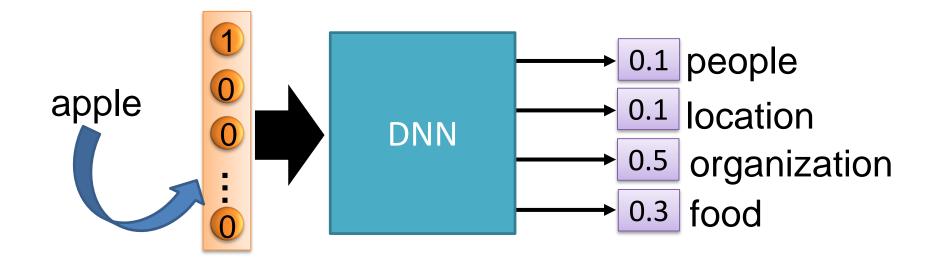
• Deep \rightarrow Modularization



Neural Network with Memory

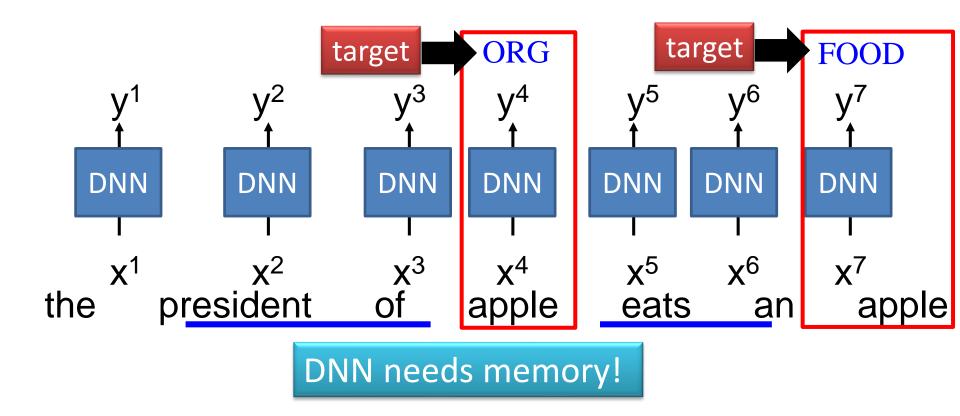
Neural Network needs Memory

- Name Entity Recognition
 - Detecting named entities like name of people, locations, organization, etc. in a sentence.



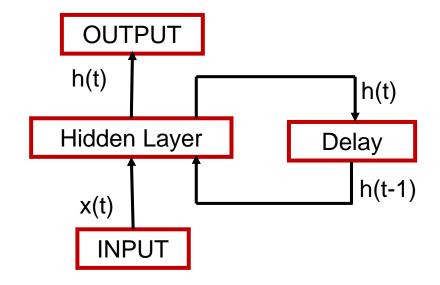
Neural Network needs Memory

- Name Entity Recognition
 - Detecting named entities like name of people, locations, organization, etc. in a sentence.

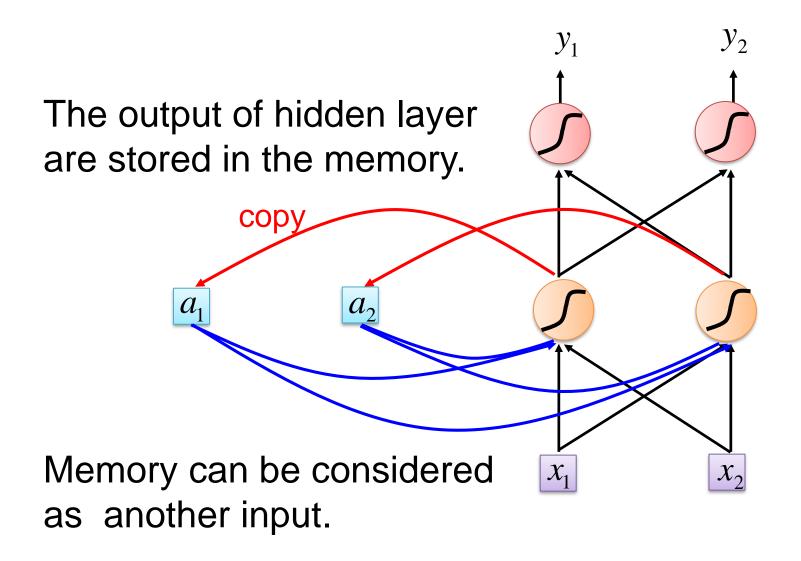


Solution: Recurrent Neural Network (RNN)

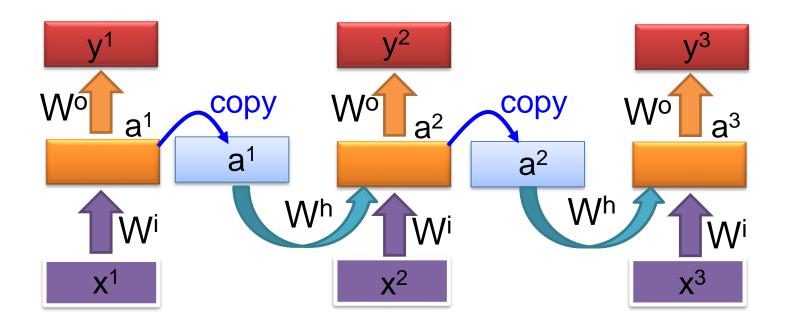
- Recurrent neural networks selectively pass information across sequence steps, while processing seq. data one element at a time.
- Allows a memory of the previous inputs to persist in the model's internal state and influence the outcome.



Recurrent Neural Network (RNN)

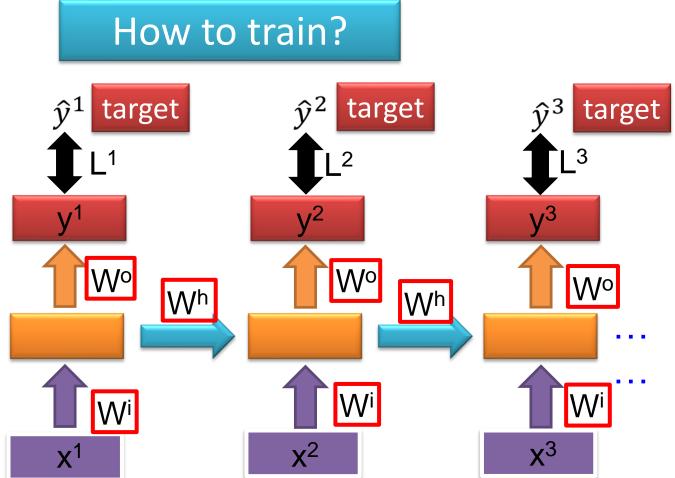


RNN



The same network is used again and again. Output y^i depends on x^1 , x^2 , x^i

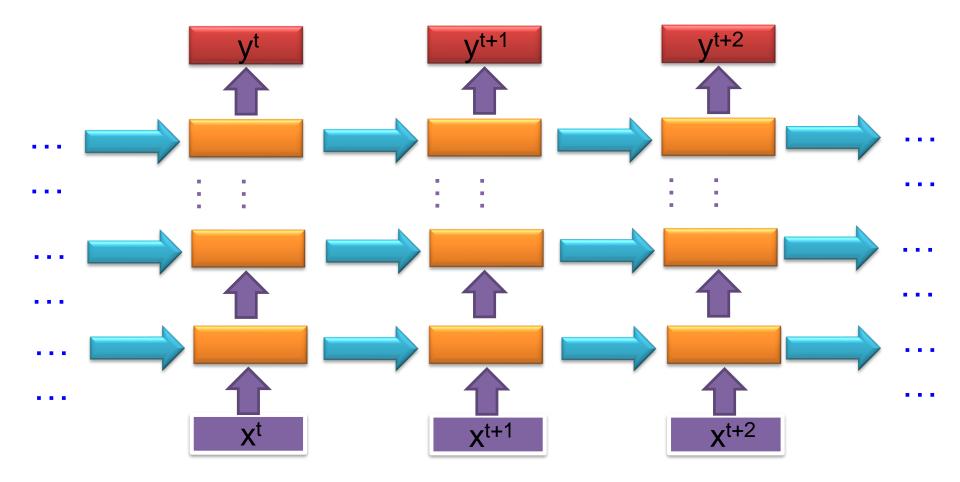
RNN



Find the network parameters to minimize the total cost:

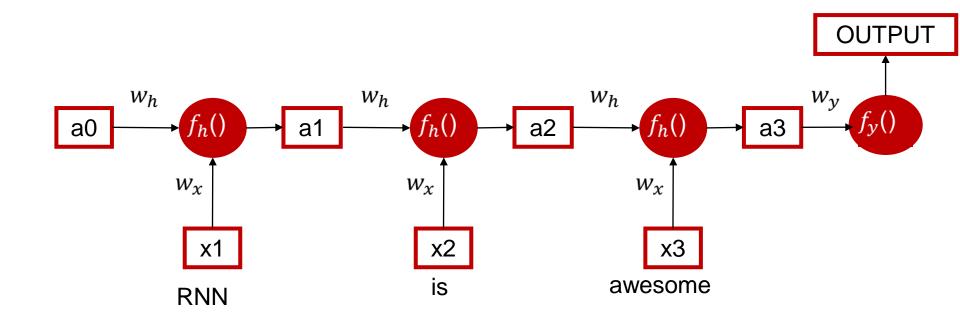
Backpropagation through time (BPTT)

Of course it can be deep ...



RNN (rolled over time)

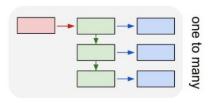
RNN is awesome



$$a(t) = f_h (w_h * a(t-1) + w_x * x(t))$$

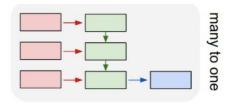
f_h are f_y are the activation function(s)

Modeling Sequences



A person riding a motorbike on dirt road

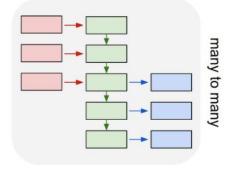
Image Captioning

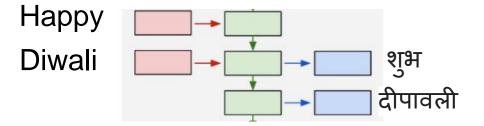


Awesome tutorial.

Positive

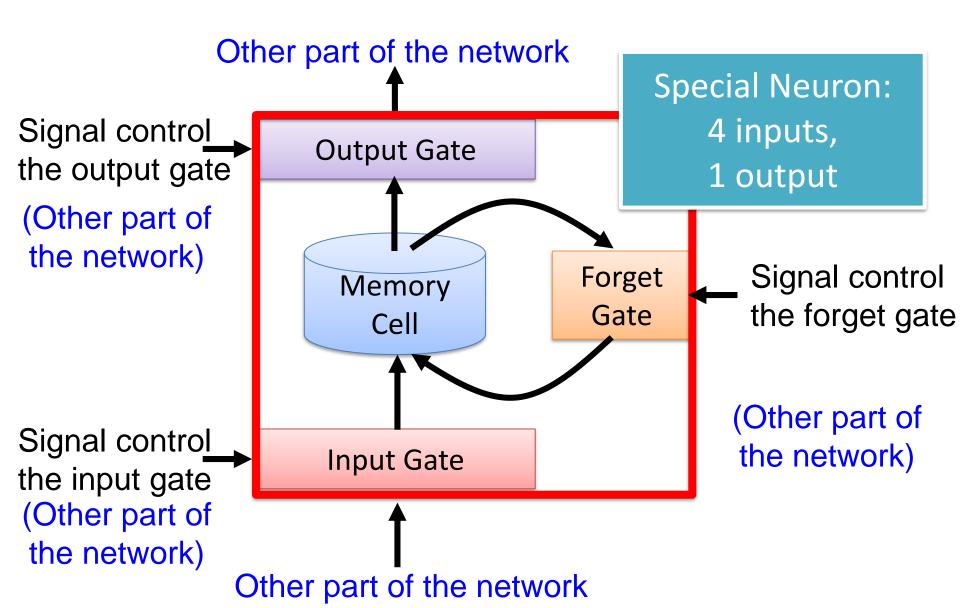
Sentiment Analysis





Machine Translation

Long Short-term Memory (LSTM)



Tuesday

• Starting with ML/DL -> Databases

•<u>The Case for Learned Index Structures</u> Tim Kraska et al SIGMOD 2018

•Lifting the Curse of Multidimensional Data with Learned Existence Indexes Stephen Macke et al NIPS 2018, MLSys: Workshop on Systems for ML and Open Source Software